Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

Traffic Modeling Considering Motion Uncertainties

2017-09-23
2017-01-2000
Simulation has been considered as one of the key enablers on the development and testing for autonomous driving systems as in-vehicle and field testing can be very time-consuming, costly and often impossible due to safety concerns. Accurately modeling traffic, therefore, is critically important for autonomous driving simulation on threat assessment, trajectory planning, etc. Traditionally when modeling traffic, the motion of traffic vehicles is often considered to be deterministic and modeled based on its governing physics. However, the sensed or perceived motion of traffic vehicles can be full of errors or inaccuracy due to the inaccurate and/or incomplete sensing information. In addition, it is naturally true that any future trajectories are unknown. This paper proposes a novel modeling method on traffic considering its motion uncertainties, based on Gaussian process (GP).
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Technical Paper

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster

2020-04-14
2020-01-0212
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm.
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
Journal Article

Multi-task Learning of Semantics, Geometry and Motion for Vision-based End-to-End Self-Driving

2021-04-06
2021-01-0194
It’s hard to achieve complete self-driving using hand-crafting generalized decision-making rules, while the end-to-end self-driving system is low in complexity, does not require hand-crafting rules, and can deal with complex situations. Modular-based self-driving systems require multi-task fusion and high-precision maps, resulting in high system complexity and increased costs. In end-to-end self-driving, we usually only use camera to obtain scene status information, so image processing is very important. Numerous deep learning applications benefit from multi-task learning, as the multi-task learning can accelerate model training and improve accuracy with combine all tasks into one model, which reduces the amount of calculation and allows these systems to run in real-time. Therefore, the approach of obtaining rich scene state information based on multi-task learning is very attractive. In this paper, we propose an approach to multi-task learning for semantics, geometry and motion.
Technical Paper

Lane Detection and Pixel-Level Tracking for Autonomous Vehicles

2022-03-29
2022-01-0077
Lane detection and tracking play a key role in autonomous driving, not only in the LKA System but help estimate the pose of the vehicle. While there has been significant development in recent years, traditional outdoor SLAM algorithms still struggle to provide reliable information in challenging dynamic environments such as lack of roadside landscape or surrounding vehicles at almost the same speed or on the road in the woods. On the structured road, lane markings as static semantic features may provide a stable landmark assist in robust localization. As most of the current lane detection work mainly on separated images ignoring the relationship between adjacent frames, we propose a pixel-level lane tracking method for autonomous vehicles. In this paper, we introduce a deep network to detect and track lane features. The network has two parallel branches. One branch detects the lane position, while the other extracts the point description on a pixel level.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Journal Article

Evaluation and Design of Electric/Electronic-Architectures of the Electric Vehicle

2016-06-17
2016-01-9143
The evaluation of electric vehicle electric/electronic-architectures (e/e-architectures) is the main topic of this paper. The electric vehicle is chosen as an example system, as it reflects the typical challenges of modern vehicle e/e-architecture development. The development of modern automotive technology also presents another important trend - vehicle electrification. New electric and electronic devices are developed and required in the automotive industry and control commands are exchanged by electric and electronic ones. The energy storage systems (ESS) properly reflect the above two aspects. The energy storage device also takes care of the peak loads, the high load dynamics, and it utilizes the braking energy in order to increase the efficiency. In this work a Li-ion battery and an ultracapacitor both are considered as energy storage devices.
Technical Paper

Development of Active Control Strategy for Flat Tire Vehicles

2014-04-01
2014-01-0859
This paper first presents an algorithm to detect tire blowout based on wheel speed sensor signals, which either reduces the cost for a TPMS or provides a backup in case it fails, and a tire blowout model considering different tire pressure is also built based on the UniTire model. The vehicle dynamic model uses commercial software CarSim. After detecting tire blowout, the active braking control, based on a 2DOF reference model, determines an optimal correcting yaw moment and the braking forces that slow down and stop the vehicle, based on a linear quadratic regulator. Then the braking force commands are further translated into target pressure command for each wheel cylinder to ensure the target braking forces are generated. Some simulations are conducted to verify the active control strategy.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Arrangement and Control Method of Cooperative Vehicle Platoon

2021-04-06
2021-01-0113
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem.
X