Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

U.S. 2007 - Which Way to Go? Possible Technical Solutions

2003-03-03
2003-01-0770
The exhaust emissions standards for heavy-duty (HD) truck engines in the U.S. are facing a severe reduction of both PM and NOx emission in the year 2007, making extensive exhaust aftertreatment inevitable. Although the final emission limit values for NOx (0.20 g/bhp-hr) and NMHC (0.14 g/bhp-hr) will see a phase-in between 2007 and 2010, the PM emission limits of 0.01 g/bhp-hr will already take full effect in 2007. Engine-out emissions in the range of EURO 5 / U.S. 2002/04 will be achievable through internal measures as described in this paper. To fulfill U.S. 2007 limits, a diesel particulate filter will be necessary. The final limits taking effect in 2010 will only be fulfilled through application of NOx and particulate aftertreatment. To achieve the low engine-out emission levels, this paper will focus on both internal measures (high-EGR combustion systems and partial homogenization) and external aftertreatment systems.
Technical Paper

Transient Drive Cycle Modeling of Supercharged Powertrains for Medium and Heavy Duty On-Highway Diesel Applications

2012-09-24
2012-01-1962
The problem with traditional drive cycle fuel economy analysis is that kinematic (backward looking) models do not account for transient differences in charge air handling systems. Therefore, dynamic (forward looking) 1D performance simulation models were created to predict drive cycle fuel economy which encompass all the transient elements of fully detailed engine and vehicle models. The transient-capable technology of primary interest was mechanical supercharging which has the benefit of improved boost response and "time to torque." The benefits of a supercharger clutch have also been evaluated. The current US class 6-8 commercial vehicle market exclusively uses turbocharged diesel engines. Three vehicles and baseline powertrains were selected based on a high-level review of vehicle sales and the used truck marketplace. Fuel economy over drive cycles was the principal output of the simulation work. All powertrains are based on EPA 2010 emission regulations.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2006-04-03
2006-01-0424
Due to its high efficiency and superior durability, the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the United States is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies-such as high-pressure, common-rail fuel systems; low-sulfur diesel fuel; oxides of nitrogen (NOx) adsorber catalysts or NACs; and diesel particle filters (DPFs)-allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Journal Article

Strategies for Meeting Phase 2 GHG and Ultra-Low NOx Emission Standards for Heavy-Duty Diesel Engines

2018-04-03
2018-01-1429
When considered along with Phase 2 Greenhouse Gas (GHG) requirements, the proposed Air Resource Board (ARB) nitrogen oxide (NOx) emission limit of 0.02 g/bhp-hr will be very challenging to achieve as the trade-off between fuel consumption and NOx emissions is not favorable. To meet any future ultra-low NOx emission regulation, the NOx conversion efficiency during the cold start of the emission test cycles needs to be improved. In such a scenario, apart from changes in aftertreatment layout and formulation, additional heating measures will be required. In this article, a physics-based model for an advanced aftertreatment system comprising of a diesel oxidation catalyst (DOC), an SCR-catalyzed diesel particulate filter (SDPF), a stand-alone selective catalytic reduction (SCR), and an ammonia slip catalyst (ASC) was calibrated against experimental data.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
Technical Paper

Rapid Deactivation of Lean-Burn Natural Gas Engine Exhaust Oxidation Catalysts

1996-10-01
961976
Methane emissions from lean-burn natural gas engines can be relatively high. As natural gas fueled vehicles become more prevalent, future regulations may restrict these emissions. Preliminary reports indicated that conventional, precious metal oxidation catalysts rapidly deactivate (in less than 50 hours) in lean-burn natural gas engine exhaust. This investigation is directed at quantifying this catalyst deactivation and understanding its cause. The results may also be relevant to oxidation of lean-burn propane and gasoline engine exhaust. A platinum/palladium on alumina catalyst and a palladium on alumina catalyst were aged in the exhaust of a lean-burn natural gas engine (Cummins B5.9G). The engine was fueled with compressed natural gas. Catalyst aging was accomplished through a series of steady state cycles and heavy-duty transient tests (CFR 40 Part 86 Subpart N) lasting 10 hours. Hydrocarbons in the exhaust were speciated by gas chromatography.
Journal Article

Pre-Turbo Aftertreatment Position for Large Bore Diesel Engines - Compact & Cost-Effective Aftertreatment with a Fuel Consumption Advantage

2011-04-12
2011-01-0299
Tier 4 emissions legislation is emerging as a clear pre-cursor for widespread adoption of exhaust aftertreatment in off-highway applications. Large bore engine manufacturers are faced with the significant challenge of packaging a multitude of catalyst technologies in essentially the same design envelope as their pre-Tier 4 manifestations, while contending with the fuel consumption consequences of the increased back pressure, as well as the incremental cost and weight associated with the aftertreatment equipment. This paper discusses the use of robust metallic catalysts upstream of the exhaust gas turbine, as an effective means to reduce catalyst volume and hence the weight and cost of the entire aftertreatment package. The primarily steady-state operation of many large bore engine applications reduces the complication of overcoming pre-turbine catalyst thermal inertia under transient operation.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
Technical Paper

NVH Target Cascading from Customer Interface to Vehicle Subsystems

2013-05-13
2013-01-1980
The definition of vehicle and powertrain level targets is one of the first tasks toward establishing where a vehicle will reside with respect to the current or future state of industry. Though development of sound quality metrics is ongoing to better correlate objective data with subjective assessments, target setting at the vehicle level is relatively straightforward. However, realization of these targets depends on effective cascading to system and component levels. Often, component level targets are derived based on experience from earlier development programs, or based on selected characteristics observed during component level benchmarking. An approach is presented here to complement current strategies for component level target definition. This approach involves a systematic concept for definition of component NVH targets based on desired vehicle level performance and a consequent target break down.
Technical Paper

Meeting 2025 CAFE Standards for LDT with Fuel-Efficient Diesel Powertrains - Approaches and Solutions

2017-03-28
2017-01-0698
In view of changing climatic conditions all over the world, Green House Gas (GHG) saving related initiatives such as reducing the CO2 emissions from the mobility and transportation sectors have gained in importance. Therefore, with respect to the large U.S. market, the corresponding legal authorities have defined aggressive and challenging targets for the upcoming time frame. Due to several aspects and conditions, like hesitantly acting clients regarding electrically powered vehicles or low prices for fossil fuels, convincing and attractive products have to be developed to merge legal requirements with market constraints. This is especially valid for the market segment of Light-Duty vehicles, like SUV’S and Pick-Up trucks, which are in high demand.
Technical Paper

Lean NOx Trap for Heavy-Duty On-Road Applications - A Feasible Alternative?

2007-10-30
2007-01-4179
The implementation and development efforts of lean NOx trap catalysts for heavy-duty applications decreased a number of years ago. Most heavy-duty engine manufacturers realized that the system complexity as well as the durability of such a system does not allow large volume production without significant risk. The current consensus of the heavy-duty community is that for 2010 the SCR system will be the prime path to meet the 0.2 g/bHPhr NOx emission standard, although this is subject to adequate infrastructure investment and progress. As a low volume manufacturer, in order to comply with the 2007 heavy-duty phase-in emission standards, General Engine Products (a subsidiary of AM General LLC) integrated a NOx adsorber system on the Optimizer 6500 engine. This engine features split combustion chamber design, rotary fuel injection pump and operates with EGR.
Journal Article

Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

2016-04-05
2016-01-0705
Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions.
X