Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

2017-03-28
2017-01-0596
Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Technical Paper

Fuel Economy Optimization of Euro 6 Compliant Light Commercial Vehicles Equipped with SCR

2014-04-01
2014-01-1356
The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Technical Paper

Electric Low Pressure Fuel Pump Control for Fuel Saving

2013-04-08
2013-01-0339
The trend of CO2 emission limits and the fuel saving due to the oil price increase are important drivers for engines development. The involved technologies have the aim to improve the global engine efficiency, improving combustion and minimizing energy losses. The engine auxiliary devices electrification (i.e. cooling pump or lubricating pump) is a way to reduce not useful energy consumption, because it becomes possible to control them depending on engine operating point. This kind of management can be applied to the electric low pressure fuel pump. Usually the fuel delivery is performed at the maximum flow rate and a pressure regulator discharges the exceeding fuel amount inside the rail (i.e. gasoline engine) or upstream of the high pressure pump (i.e. common rail diesel engine). At part load, especially in diesel application, the electric fuel pump flow is higher than needed for engine power generation.
Journal Article

Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector

2014-04-01
2014-01-1426
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Development of Model-Based OBDII-Compliant Evaporative Emissions Leak Detection Systems

2008-04-14
2008-01-1012
The paper presents the main results obtained by developing and critically comparing different evaporative emissions leak detection diagnostic systems. Three different leak detection methods have been analyzed and developed by using a model-based approach: depressurization, air and fuel vapor compression, and natural vacuum pressure evolution. The methods have been developed to comply with the latest OBD II requirement for 0.5 mm leak detection. Detailed grey-box models of both the system (fuel tank, connecting pipes, canister module, engine intake system) and the components needed to perform the diagnostic test (air compressor or vacuum pump) have been used to analyze in a simulation environment the critical aspects of each of the three methods, and to develop “optimal” diagnostic model-based algorithms.
Technical Paper

Combustion Monitoring Based on Engine Acoustic Emission Signal Processing

2009-04-20
2009-01-1024
The paper presents the development of a real-time engine combustion monitoring system, based on direct measurement of engine acoustic emission, for on-board application. Acoustic emission contains information about several processes taking place within the engine. The combustion process could in fact be monitored by real time processing acoustic data, and also other features related to engine operation are contained in the very same signal (such as valve closing events, and both engine and turbocharger speed). The paper describes the development of real-time signal processing algorithms that could be integrated in the actual ECU software, in order to improve combustion diagnosis and control by extracting in-cylinder pressure rise rate information from the overall engine noise. In particular, the ability to effectively reconstruct in-cylinder pressure rise rate under all engine operating conditions would allow for a closed-loop combustion control system.
Technical Paper

Artificial Intelligence Methodologies for Oxygen Virtual Sensing at Diesel Engine Intake

2012-04-16
2012-01-1153
In the last decades, worldwide automotive regulations induced the industry to dramatically increase the application of electronics in the control of the engine and of the pollutant emissions reduction systems. Besides the need of engine control, suitable fault diagnosis tools had also to be developed, in order to fulfil OBD-II and E-OBD requirements. At present, one of the problems in the development of Diesel engines is represented by the achievement of an ever more sharp control on the systems used for the pollutant emission reduction. In particular, as far as NOx gas is concerned, EGR systems are mature and widely used, but an ever higher efficiency in terms of emissions abatement, requires to determine as better as possible the actual oxygen content in the charge at the engine intake manifold, also in dynamic conditions, i.e. in transient engine operation.
Technical Paper

Advanced GDI Injector Control with Extended Dynamic Range

2013-04-08
2013-01-0258
Considering the world-wide market for GDI engines, the introduction of tighter polluting emission legislation, additional costs, vehicle fuel economy and pollutants reduction become substantial drivers. Focusing on particulate reduction, direct injection gasoline engines require advanced combustion strategies. The main levers used are injection splitting in order to reduce wall impingement (due to lower penetration) and higher rail pressure level to reduce droplet size. To reach this target it is necessary to improve precision in term of injected quantity in the small quantity region with high fuel rail pressure and during the actuation of multiple injections. As a consequence of the requirements of high quantities at full load, known GDI solenoid injectors show an unacceptable spread in terms of small injected quantity when the energizing time is small such that the injector works in the ballistic zone. Following these premises an electronic approach is needed.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
X