Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Head-Neck Kinematics in Dynamic Forward Flexion

1998-11-02
983156
Two-dimensional film analysis was conducted to study the kinematics of the head and neck of 17 restrained human volunteers in 24 frontal impacts for acceleration levels from 6g to 15g. The trajectory of the head center of gravity relative to upper torso reference points and the rotation of head and neck relative to the lower torso during the forward motion phase were of particular interest. The purpose of the study was to analyze the head-neck kinematics in the mid-sagittal plane for a variety of human volunteer frontal sled tests from different laboratories using a common analysis method for all tests, and to define a common response corridor for the trajectory of the head center-of-gravity from those tests.
Technical Paper

Finite Element Analysis of Traumatic Subdural Hematoma

1987-11-01
872201
A two-dimensional finite element model of the head of a rhesus monkey was built to simulate the head acceleration experiments done by Gennarelli and his colleagues. The purposes of the study were to better understand the mechanisms of traumatic subdural hematoma and to estimate its threshold of occurrence. The brain was treated as an isotropic homogeneous elastic material with and without structural damping and the skull was treated as a rigid shell. To simulate Abel et al.'s (1) experiments, the head was subjected to an enforced forward rotation around the neck. The loading had an initial acceleration phase followed by deceleration. During both acceleration and deceleration phases, high shear stress (and thus strain) occurred at the vertex, where the parasagittal bridging veins are located. The deformation of the bridging vein depended on its orientation relative to the direction of impact.
X