Refine Your Search

Search Results

Technical Paper

The Application of Coconut-oil Methyl Ester for Diesel Engine

2007-10-30
2007-32-0065
The coconut-oil methyl ester is made from coconut oil and methanol, and both cold start performance and ignition characteristics of coconut-oil methyl ester are experimentally investigated by using a diesel engine. In experiments, diesel fuel and coconut-oil methyl ester are used and the blended ratio of coconut-oil methyl ester to diesel fuel is changed. The test is conducted at full load and 3000 rpm. The diesel engine can be run stably with any mixing ratio of coconut-oil methyl ester, however the power is slightly reduced with increasing the mixing ratio of coconut-oil methyl ester. In the cold start condition, when the mixing ratio of coconut-oil methyl ester increases, the combustion chamber wall temperature rises early and the ignition timing is improved. Therefore, the coconut-oil methyl ester has superior compression ignition characteristics and reduces exhaust gas emissions, so that the coconut-oil methyl ester is good alternative fuel for diesel engines.
Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

Study on Combustion and Exhaust Gas Emission Characteristics of Lean Gasoline-Air Mixture Ignited by Diesel Fuel Direct Injection

1998-10-19
982482
The uniform lean gasoline-air mixture was provided to diesel engine and was ignited by direct diesel fuel injection. The mixing region that is formed by diesel fuel penetration and entrainment of ambient mixture is regarded as combustible turbulent jet. The ignition occurs in this region and the ambient lean mixture is burned by flame propagation. The lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An increase of diesel fuel injection is effective to ensure combustion and ignition. As diesel fuel injection increases, HC concentration decreases, and NOx and CO concentration increases.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Technical Paper

Simultaneous Measurement of Light Emission and Absorption Behavior of Unburned Gas During Knocking Operation

1993-10-01
932754
With the aim of elucidating the mechanism generating knock, an examination was made of the preflame reaction behavior of end gas in the combustion chamber in the transition from normal combustion to abnormal combustion characterized by the occurrence of knocking. Simultaneous measurements were made in the same cycle of the light absorption and emission behavior of the OH (characteristic spectrum of 306.4 nm), CH (431.5 nm) and C2 (516.5 nm) radicals in the end-gas region using spectroscopic methods. The absorbance behavior of a blue flame prior to autoignition is believed to be an important factor in the mechanism causing knock.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

Influence of the Characteristic Length on Performance of Plasma Jet Igniters

1994-10-01
942051
The investigation regarding performance of plasma jet igniters was explored by using a constant volume vessel. This study focused on investigating the relationship between the jet effect, the hot gas jet issued from the igniter, and combustion enhancement. The hot gas penetration was visualized by the schlieren system with CCD camera and image intensifier. In the cases of small energies, 0.63 and 0.90 J, the combustion enhancement effect is similar to that of combustion jet igniter. In cases of supplied energies, 2.45 and 5.00 J, the jet effect influences on the combustion enhancement effect for small characteristic length of the igniter.
Technical Paper

Influence of Various Biodiesel Fuels on Diesel Engine Performance

2009-11-03
2009-32-0100
The composition ratio of saturated and unsaturated fatty acid methyl esters (FAME) is depended on feedstock. Three FAMEs: soybean (SME), palm (PME) and coconut oil (CME) methyl esters were mixed to make fuels which have different composition ratio. The ignitability of fuel which mainly consisted of unsaturated FAME was inferior. Power was slightly reduced with increasing of mixing ratio of CME; however exhaust gas emissions were improved because CME contained a lot of oxygen atoms. Fuel which was equal mixture SME and CME indicated almost the same ignition characteristic as that of PME because they have same composition ratio.
Technical Paper

Improvement of Engine Performance With Lean Mixture Ignited By Diesel Fuel Injection and Internal Egr

2000-06-12
2000-05-0076
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. The internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the mixture temperature. The test engine was a 4-stroke, single- cylinder direct-injection diesel engine. The cooling system was forced-air cooling and displacement volume was about 211 (cm3). The compression ratio was about 19.9:1. The experiment was made under constant engine speed of 3000 (r/min). The boost pressure was maintained at 101.3 (kPa). Five values of mass flow rate of diesel fuel injection were selected from 0.060 (g/s) to 0.167 (g/s) and five levels of back pressure: 0), 26.7, 53.3, 80.0 and 106.6 (kPa) were selected for the experiment. The effect of internal EGR is varied by the back pressure level.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

Engine Performance of Lean Methanol-Air Mixture Ignited by Diesel Fuel Injection Applied with Internal EGR

2000-06-19
2000-01-2012
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by direct diesel fuel injection. In this study, the internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the temperature of the mixture before the ignition. It is confirmed that the lean methanol-air mixture of air-fuel ratio between 130 and 18 could be ignited and burned when the back pressure of 80 [kPa] is added. The ignition and combustion characteristics can be improved by the internal EGR, however the engine performance and NOx emission deteriorated.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Combustion Characteristics and Exhaust Gas Emissions of Lean Mixture Ignited by Direct Diesel Fuel Injection with Internal EGR

1999-09-28
1999-01-3265
The uniform lean gasoline-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. In this study, the internal EGR is add to this ignition method in order to activate the fuel in the mixture before the ignition. It is confirmed that the lean mixture of air-fuel ratio between 150 and 40 could be ignited and burned by this ignition method when the back pressure of 80 [kPa] is added, and the burning period is shorted by internal EGR. However, as the back pressure increases, NOx concentration is increased by the high temperature residual gas.
Technical Paper

Application of Newly Developed Cellulosic Liquefaction Fuel for Diesel Engine

2009-11-03
2009-32-0132
A new bio-fuel i.e. the cellulosic liquefaction fuel (CLF) was developed for diesel engines. CLF was made from woods by direct liquefaction process. When neat CLF was supplied to diesel engine, the compression ignition did not occur, so that blend of CLF and diesel fuel was used. The engine could be operated when the mixing ratio of CLF was up to 35 wt%. CO, HC and NOx emissions were almost the same as those of diesel fuel when the mixing ratio of CLF was less than 20 wt% whereas the thermal efficiency slightly decreases with increase in CLF mixing ratio.
Technical Paper

Analysis of the Characteristics of HCCI Combustion and ATAC Combustion Using the Same Test Engine

2004-09-27
2004-32-0097
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted considerable interest in recent years as a new combustion concept for internal combustion engines. On the other hand, two combustion concepts proposed for two-cycle spark-ignition (SI) engines are Active Thermo-Atmosphere Combustion (ATAC) and Activated Radical (AR) combustion. The authors undertook this study to examine the similarities and differences between HCCI combustion and ATAC (AR) combustion. Differences in the low-temperature oxidation reaction behavior between these two combustion processes were made clear using one test engine.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Technical Paper

An Experimental Study Concerning the influence of Hot Residual Gas On Combustion

2000-01-15
2000-01-1419
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 [nm]) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. Authors also analyzed on the heat release and thermodynamic mean temperature due to research activity state of unburned gas. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. Raising the exhaust pressure forcibly recirculated more exhaust gas internally. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Technical Paper

A Study on the Compression Ignition Characteristics of FAME for Low Compression Ratio Diesel Engine

2012-10-23
2012-32-0010
The purpose of this study is to clarify ignition characteristics and engine performance of FAME for 4-stroke diesel engine in low compression ratios. Diesel fuel and coconut oil methyl ester (CME) were selected as test fuels, because CME consisted of saturate FAMEs which were good ignition characteristics. To reduce the compression ratio, thin copperplates were inserted between cylinder head and cylinder block and the compression ratio was reduced from 20.6 that was standard to 15. The engine starting test and an ordinary engine performance test were made at 3600 min.-₁. In engine starting test, the engine was soaked at room temperature and the ignition timing of diesel fuel was remarkably delayed compared with CME. When the compression ratio was 16, for diesel fuel, the misfiring cycles were included during engine warming up. In case of 15 of compression ratio, the engine could not be started by diesel fuel; however the engine could be run by CME.
Technical Paper

A Study on Influence of Forced Over Cooling on Diesel Engine Performance

2011-11-08
2011-32-0605
The ignitability and engine performance of FAMEs at the cold condition were experimentally investigated by using two FAMEs, i.e. coconut oil methyl ester (CME) and soybean oil methyl ester (SME). The cold start test and forced over cooling test were conducted. In the forced over cooling test, engine was forced cooled by the injecting water mist to engine cooling fin. In the cold start test, the cylinder pressure of CME rose earliest because CME has a superior ignitability. The crank angle at ignitions of diesel fuel and CME were not so affected by the forced over cooling, however ignition timing of SME was remarkably delayed. In cases of forced over cooling, COV of maximum combustion pressure of CME was lower than that of normal air cooling condition. The forced over cooling has a potential to reduce NOx emission, however HC, CO and smoke concentrations were increased in a high load due to incomplete combustion.
X