Refine Your Search

Topic

Search Results

Technical Paper

Viscosity and Lubricity of (Liquid) Dimethyl Ether - An Alternative Fuel for Compression-Ignition Engines

2002-03-04
2002-01-0862
In this paper, dependence of liquid-DME viscosity on temperature and pressure was studied theoretically. It was found that in the saturated-liquid state, the DME viscosity is 0.37 cSt at - 40 ° C and it drops to 0.17 cSt when temperature increases to 80 ° C. In the subcooled-liquid state, viscosity varies linearly with pressure at a given temperature; at 20 ° C, viscosity of the subcooled liquid is 0.23 cSt at 5.3 bar and it increases to 0.33 cSt at 500 bar. The predicted liquid-DME viscosity and its pressure dependence agree with those obtained by measurement. Lubricity of liquid DME also was studied. Polar-headed, long-chain alcohols and fatty acids with chain length of C15 ∼ C22 were found to be candidates of lubricity additives for DME. Castor oil (chemically, it is basically a C18 fatty acid) was found to be a good additive for improving the DME lubricity.
Technical Paper

Thermodynamic Properties of Dimethyl Ether - An Alternative Fuel for Compression-Ignition Engines

2004-03-08
2004-01-0093
On the basis of the molecular thermodynamics for fluids, the thermodynamic properties of DME are developed for pressure p ≤ 500 bar and temperature T ≤ 200 °C, which covers pressures and temperatures that a DME fuel system for the CI-engine application would experience. The properties cover subcooled, two-phase, and superheated/supercritical regions, including p-v-T properties, enthalpy, entropy, latent heat, heat capacity, speed of sound in vapor, liquid and two-phase mixtures, bulk modulus, and surface tension. A volume-cubic equation of state for DME also is developed, which allows calculating the DME density at any given pressure and temperature analytically. All the properties are given in equations as well as in charts. For convenience in two-phase-flow applications, e.g., design of the fuel tank and cavitation analysis, the saturated properties are also given in tables, listed in both pressure and temperature up to the critical point.
Technical Paper

Thermochemical Characteristics of Dimethyl Ether - An Alternative Fuel for Compression-Ignition Engines

2001-03-05
2001-01-0154
This paper analyzed chemical and thermophysical properties of dimethyl ether (DME) as an alternative fuel for compression-ignition engines. On the basis of the chemical structure of DME and the molecular thermodynamics of fluids, equations have been developed for most of the DME thermophysical properties that would influence the fuel-system performance. These equations are easy to use and accurate in the pressure and temperature ranges for CI engine applications. The paper also pointed out that the DME spray in the engine cylinder would differ significantly from that of diesel fuel due to the thermodynamic characteristics of DME. The DME spray pattern will affect the mixing and combustion processes in the engine cylinder, which, in turn, will influence emissions from combustion.
Journal Article

Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates

2011-09-13
2011-01-2248
The temperature distribution is studied theoretically in a battery module stacked with 12 high-power Li-ion pouch cells. The module is cooled indirectly with ambient air through aluminum heat-sink plates or cooling plates sandwiched between each pair of cells in the module. Each of the cooling plates has an extended cooling fin exposed in the cooling air channel. The cell temperatures can be controlled by changing the air temperature and/or the heat transfer coefficient on the cooling fin surfaces by regulating the air flow rate. It is found that due to the high thermal conductivity and thermal diffusivity of the cooling plates, heat transfer of the cooling plate governs the cell temperature distribution by spreading the cell heat over the entire cell surface. Influence of thermal from the cooling fins is also simulated.
Journal Article

Thermal Analysis of a Li-ion Battery System with Indirect Liquid Cooling Using Finite Element Analysis Approach

2012-04-16
2012-01-0331
The performance and life of Li-ion battery packs for electric vehicle (EV), hybrid electrical vehicle (HEV), and plug-in hybrid electrical vehicle (PHEV) applications are influenced significantly by battery operation temperatures. Thermal management of a battery pack is one of the main factors to be considered in the pack design, especially for those with indirect air or indirect liquid cooling since the cooling medium is not in contact with the battery cells. In this paper, thermal behavior of Li-ion pouch cells in a battery system for PHEV applications is studied. The battery system is cooled indirectly with liquid through aluminum cooling fins in contact with each cell and a liquid cooled cold plate for each module in the battery pack. The aluminum cooling fins function as a thermal bridge between the cells and the cold plate. Cell temperature distributions are simulated using a finite element analysis approach under cell utilizations corresponding to PHEV applications.
Journal Article

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

2012-04-16
2012-01-0333
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures.
Technical Paper

Performance Analysis of Rail-Pressure Supply Pumps of Common-Rail Fuel Systems for Diesel Engines

2005-04-11
2005-01-0909
This paper discusses the performance of the radial plunger pump used in the contemporary diesel common-rail fuel systems for rail-pressure supply. On the ground of the pump mechanism, the transient flow, drive torque, and efficiency of the pump are analyzed for various operation conditions. The analysis shows that the number of plungers and utilization of the pump capacity govern fluctuations in the pump discharge. The pump flow can be characterized by a discharge function which applies to both full- and part-capacity pump flows. At the full pump capacity, the discharge fluctuation is determined solely by the number of plungers: a pump with an odd number of plungers has more ripples and lower amplitudes in its discharge than a pump with an even number of plungers does. A pump operates at a part capacity has more fluctuations in the discharge than when at the full capacity.
Technical Paper

Mitigating Intensities of Super Knocks Encountered in Highly Boosted Gasoline Direct Injection Engines

2015-03-30
2015-01-0084
Turbocharged gasoline direct injection (TGDI) engines can achieve a very high level of brake mean effective pressure and thus the engines can be downsized. The biggest challenge in developing highly-boosted TGDI engines may be how to mitigate the pre-ignition (PI) triggered severe engine knocks at high loads and low engine speeds. Since magnitudes of cylinder pressure fluctuations during aforementioned engine knocks reach those for peak firing pressures in normal combustion, they are characterized as super knocks. It is widely believed that the root cause for super knocks is the oil particles entering the engine cylinder, which pre-ignite the cylinder mixture in late of the compression stroke. It is neither possible nor practical to completely eliminate the oil particles from the engine cylinder; a reasonable approach to mitigate super knocks is to weaken the conditions favoring super knocks.
Technical Paper

Influence of Fuel Dilution of Crankcase Oil on Ignitability of Oil Particles in a Highly Boosted Gasoline Direct Injection Engine

2015-09-29
2015-01-2811
The relationship between fuel dilution of the crankcase oil and low-speed pre-ignition (LSPI) was studied experimentally with a highly-boosted 1.8L turbocharged gasoline direct injection (TGDI) engine fueled with RON93 gasoline. It was found that properties of oil particles entered the engine cylinder were affected significantly by fuel dilution. The gasoline content in the oil represents those with long carbon chain or heavy species in gasoline, with much lower boiling points and auto ignition temperatures than those for the undiluted engine oil. Thus, dilution of the engine oil by these gasoline species lowers the volatility and the minimum auto ignition temperature of the engine oil. With 15% fuel content in the oil, the flash point and the fire point of the SAE 5W30 oil dropped from 245 °C to 90 °C and from 265 °C to 150 °C, respectively.
Technical Paper

Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection

2009-10-06
2009-01-2913
The fuel saving benefit is analyzed for a class-8 truck diesel engine equipped with a WHR system, which recovers the waste heat from the EGR. With this EGR-WHR system, the composite fuel savings over the ESC 13-mode test is up to 5%. The fuel economy benefit can be further improved if the charge air cooling is also integrated in the Rankine cycle loop. The influence of working fluid properties on the WHR efficiency is studied by operating the Rankine cycle with two different working fluids, R245fa and ethanol. The two working fluids are compared in the temperature-entropy and enthalpy-entropy diagrams for both subcritical and supercritical cycles. For R245fa, the subcritical cycle shows advantages over the supercritical cycle. For ethanol, the supercritical cycle has better performance than the subcritical cycle. The comparison indicates that ethanol can be an alternative for R245fa.
Journal Article

Impact of Fuel Injection on Dilution of Engine Crankcase Oil for Turbocharged Gasoline Direct-Injection Engines

2015-04-14
2015-01-0967
Turbocharged gasoline direct injection (TGDI) engines often have a flat torque curve with the maximum torque covering a wide range of engine speeds. Increasing the high-speed-end torque for a TGDI engine provides better acceleration performance to the vehicle powered by the engine. However, it also requires more fuel deliveries and thus longer injection durations at high engine speeds, for which the multiple fuel injections per cycle may not be possible. In this study, results are reported of an experimental investigation of impact of fuel injection on dilution of the crankcase oil for a highly-boosted TGDI engine. It was found in the tests that the high-speed-end torque for the TGDI engine had a significant influence on fuel dilution: longer injection durations resulted in impingement of large liquid fuel drops on the piston top, leading to a considerable level of fuel dilution.
Technical Paper

Fuel Injection Strategy for Reducing NOx Emissions from Heavy-Duty Diesel Engines Fueled with DME

2006-10-16
2006-01-3324
A new fuel injection strategy is proposed for DME engines. Under this strategy, a pre-injection up to 40% demand is conducted after intake valves closing. Due to high volatility of DME, a lean homogeneous mixture can be formed during the compression stroke. Near TDC, a pilot injection is conducted. Combined fuel mass for the pre-injection and pilot injection is under the lean combustion limit of DME. Thus, the mixture is enriched and combustion can take place only in the neighborhood of sprays of the pilot injection. The main injection is conducted after TDC. Because only about half of the demand needs to be injected and DME evaporates almost immediately, combustion duration for the main injection plus the unburnt fuel in the cylinder should not be long because a large portion of the fuel has been premixed with air. With a high EGR rate and proper timing for the main injection, low temperature combustion could be realized.
Technical Paper

Development of a Variable-Displacement, Rail-Pressure Supply Pump for Dimethyl Ether

2000-03-06
2000-01-0687
A variable-displacement, 275-bar dimethyl-ether pump for a common-rail injection system has been developed successfully. The pump is an inlet-throttled, wobble-plate-actuated, multi-plunger system. Results of the pump tests/simulations show that the pump can deliver fuel according to the engine requirement at different speeds due to its variable-displacement feature, which is obtained by controlling the discharge phase angle via the two-phase filling characteristic of the pump. Although the pump is designed for dimethyl ether, its concept is general and thus may be applied to the common-rail systems for other fuels.
Technical Paper

Development of a Liquid-DME Fuel Tank - A Two-Fluid Thermodynamic Pump

2001-03-05
2001-01-0652
A novel fuel tank for storing liquid dimethyl ether (DME) has been developed. This fuel tank was made of cast aluminum with a water capacity of 40 liters. It contains two fluids: liquid DME and a vapor-liquid mixture of propane. A diaphragm separates the two fluids. The propane in the tank is a pressurizing fluid that pressurizes DME into a subcooled-liquid state; and, it also functions as a driving fluid that pumps the liquid DME from the tank to the injection pump using its vapor pressure. These features characterize the tank as a thermodynamic pump. Several hundred hours of tank tests at various temperatures have been conducted. Results of tank filling-discharge cycles simulating those in vehicle applications demonstrated that the concept of the two-fluid thermodynamic pump works and that the tank design is successful.
Technical Paper

Development of A 1.5L High-Efficiency and High-Specific-Power Hybrid Engine

2022-10-28
2022-01-7062
Although the brake thermal efficiency of the state-of-the-art Atkinson-cycle hybrid engines have reached 41%, such engines typically have a low specific power. The ideal hybrid engines for SUVs should have a high thermal efficiency as well as a high specific power. Jiangling Motors recently developed a 4-cylinder, 1.5L TGDI hybrid Miller engine for powering mid-size SUVs, which has achieved 42% brake thermal efficiency, 19.3-bar BMEP, and 73.3-kW/L specific power. The engine has a high compression ratio, a long stroke, and is equipped with a low-pressure EGR system. It can operate with the stoichiometric mixture on the full engine map, with the help of the water-cooled exhaust manifold and the intelligent thermal management system.
Technical Paper

Compression Ignition Delay (Physical + Chemical) of Dimethyl Ether - An Alternative Fuel for Compression-Ignition Engines

2003-03-03
2003-01-0759
Compression ignition delay of DME is studied theoretically. Physical phenomena that would influence the ignition delay, characteristics of the DME spray and evaporation of DME droplets in the spray, are analyzed. It is found that the short ignition delay of DME revealed in engine tests is due largely to the short physical delay of DME: The evaporation rate of DME droplets is about twice that of diesel-fuel droplets at the same cylinder condition and, the stoichiometric mixture in a DME spray can be established immediately - in comparison, the stoichiometric mixture in a diesel-fuel spray cannot be established before temperatures of diesel-fuel droplets become higher than 225 °C. The high droplet evaporation rate of DME is also responsible for the irregular boundary and tip of the DME spray as observed by many investigators. On the basis of experimental data reported in the literature, cetane number of DME is estimated to be 68.
Technical Paper

Comparative Study of Characteristics of Diesel-Fuel and Dimethyl-Ether Sprays in the Engine

2005-04-11
2005-01-1723
A comparative study of characteristics of diesel fuel and dimethyl ether sprays was conducted on the basis of momentum conservation. The analysis reveals that the DME spray in the diesel combustion system may not develop as well as that of diesel fuel at high engine loads and speeds due primarily to the following reasons. (1) Because 42% more fuel volume must be injected into the engine to reach the diesel-fuel equivalent and because the DME injection pressure is lower than that of diesel fuel, longer injection duration for DME is needed even if with the enlarged orifice diameters.
Journal Article

Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach

2013-04-08
2013-01-1534
In this study, thermal runaway of a 3-cell Li-ion battery module is analyzed using a 3D finite-element-analysis (FEA) method. The module is stacked with three 70Ah lithium-nickel-manganese-cobalt (NMC) pouch cells and indirectly cooled with a liquid-cooled cold plate. Thermal runaway of the module is assumed to be triggered by the instantaneous increase of the middle cell temperature due to an abusive condition. The self-heating rate for the runaway cell is modeled on the basis of Accelerating Rate Calorimetry (ARC) test data. Thermal runaway of the battery module is simulated with and without cooling from the cold plate; with the latter representing a failed cooling system. Simulation results reveal that a minimum of 165°C for the middle cell is needed to trigger thermal runaway of the 3-cell module for cases with and without cold plate cooling.
Technical Paper

Characteristics of Abnormal Combustion in the Scavenging Zone for a Highly-Boosted Gasoline Direct Injection Engine

2017-03-28
2017-01-1721
In order to improve low speed torques, turbocharged gasoline direct injection (TGDI) engines often employ scavenging with a help of variable valve timing (VVT) controlled by the cam phasers. Scavenging improves the compressor performance at low flows and boosts low-speed-end torques of the engines. Characteristics of the engine combustion in the scavenging zone were studied with a highly-boosted 1.5L TGDI engine experimentally. It was found that the scavenging zone was associated with the highest blowby rates on the engine map. The blowby recirculation was with heavy oil loading, causing considerable hydrocarbon fouling on the intake ports as well as on the stem and the back of the intake valves after the engine was operated in this zone for a certain period of time. The low-speed pre-ignition (LSPI) events observed in the engine tests fell mainly in the scavenging zone.
Technical Paper

Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System?

2006-04-03
2006-01-0053
Emissions from CI engines fueled with dimethyl ether (DME) were discussed in this paper. Thanks to its high content of fuel oxygen, DME combustion is virtually soot free. This characteristic of DME combustion indicates that the particulate filter will not be needed in the aftertreatment system for engines fueled with DME. NOx emissions from a CI engine fueled with DME can meet the US 2007 regulation with a high EGR rate. Because 49% more fuel mass must be delivered in each DME injection than the corresponding diesel-fuel injection, and the DME injection pressure is lower than 500 bar under the current fuel-system technology, the DME injection duration is generally longer than that of diesel-fuel injection. This is unfavorable to further NOx reduction. A multiple-injection strategy with timing for the primary injection determined by the cylinder temperature was proposed.
X