Refine Your Search

Topic

Search Results

Technical Paper

Using a Driving Game to Increase the Realism of Laboratory Studies of Automobile Passenger Thermal Comfort

2003-01-01
2003-01-2710
The thermal comfort of automobile occupants depends on many complex heat exchanges, and it follows that many comfort research projects are done in laboratories, where conditions can be more readily controlled and the human subjects closely monitored. The laboratory setting, however, may appear unrealistic to a subject because it does not move and it does not afford the experience of driving or being a passenger. This could affect the research results if the test subject's level of exertion were inappropriate, or if the unrelieved focus on comfort questionnaires caused the subject to be unduly sensitive to his or her thermal comfort. In a recent laboratory study, a computer driving game was used as an inexpensive way to increase the realism for the subjects, and this paper examines the physiological effects of using the game. The metabolic rates of subjects playing or watching the game were found to be very close to their rates when driving or riding in a real car.
Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Technical Paper

UniTire Model for Tire Cornering Properties under Varying Traveling Velocities

2016-09-27
2016-01-8037
The tire mechanics characteristics are essential for analysis and control of vehicle dynamics. Basically, the effects of sideslip, longitudinal slip, camber angle and vertical load are able to be represented accurately by current existing tire models. However, the research of velocity effects for tire forces and moments are still insufficient. Some experiments have demonstrated that the tire properties actually vary with the traveling velocity especially when the force and moment are nearly saturated. This paper develops an enhanced brush tire model and the UniTire semi-physical model for tire forces and moments under different traveling velocities for raising need of advanced tire model. The primary effects of velocity on tire performances are the rubber friction distribution characteristics at the tire-road interface.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Technical Paper

The Research of Tire Mechanics at Lower-Speed for Interactive Developing

2015-03-30
2015-01-0081
With the development of computer and vehicle research to high frequency, the driving simulator plays an important role on vehicle research and pre-development. The driving simulator have already been used for research about human factors, advanced active system (ABS, ESP et al), the vehicle dynamics and intelligent transportation systems (ITS) et al. The crucial requirement for a driving simulator is that it should have realistic behavior. The realistic behavior base on high-fidelity dynamics models especially tire model. “Tire/road” model is of special importance model for its influence on vehicle performances. The forces for accelerating, braking and steering are all came from tire road contact. The simulator simulation faces all possible driving scenes as driving in the real word, like parking on the hill, stop and start again, sharp steering and sharp braking et al.
Technical Paper

The Quasi-Instantaneous Engine Output Torque Model Based on Indicator Diagram

2014-04-01
2014-01-1083
High-quality dynamics model is one of the trends of vehicle dynamics model research and development. The engine generates high frequency excitation during operation, which may cause dynamic response in full vehicle. However, the widely-used internal-combustion engine model in vehicle dynamics simulation is steady-state model, which can't describe the fluctuation of engine drive torque along with the crankshaft angle. Consequently, this article concentrates on the modeling of instantaneous engine drive torque in order to improve the dynamic performance of the vehicle model. The paper has built the quasi-instantaneous engine model based on indicator diagram. To satisfy the requirement of real-time simulation, dynamically equivalent piston-connecting rod model is built and fast interpolation algorithm is researched. The linkage was simplified to spring and damper, and decoupled the piston translation and the crank rotation movements.
Technical Paper

Study on Test Method for Takeover Time of L3 Automatic Vehicles

2020-12-30
2020-01-5144
According to SAE’s classification of autonomous driving, L3 systems are conditional autonomous driving. The responsibility of vehicle control and environmental monitoring are systems. But when the system requires the driver to respond its request, the driver must respond soon, and if an accident occurs, the responsibility is the driver. So, it requires the driver have ability to take over the vehicle all the time. Therefore, the length of the driver’s takeover time in different scenarios is becoming more and more important. The system needs to send a takeover signal at a certain time advance according to the driving environment, so that the driver has time to complete the takeover of the system. This article describes the takeover control flow chart of the L3 autopilot systems, and the factors that affect the takeover time, such as the time when the takeover signal is issued, the form of takeover signal, and the state of the driver.
Technical Paper

Study on Squeeze Mode Magneto-Rheological Engine Mount with Robust H-Infinite Control

2011-04-12
2011-01-0757
Magneto-rheological fluid squeeze mode investigations at CVeSS have shown that MR fluids show large force capabilities in squeeze mode. A novel MR squeeze mount was designed and built at CVeSS, and a dynamic mathematical model was developed, which considered the inertial effect and was validated by the test data. A variant engine mount that will be used for isolating vibration, based on the MR squeeze mode is proposed in the paper. The mathematical governing equations of the mount are derived to account for its operation with MR squeeze mode. The design method of a robust H✓ controller is addressed for the squeeze mount subject to parameter uncertainties in the damping and stiffness. The controller parameter can be derived from the solution of bilinear matrix inequalities (BMIs). The displacement transmissibility is constrained to be no more than 1.05 with this robust H✓ controller. The MR squeeze mount has a very large range of force used to isolate the vibration.
Technical Paper

Stability Control of Four-Wheel-Drive Electric Vehicle with Electro-Hydraulic Braking System

2014-09-28
2014-01-2539
Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments.
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

1998-02-01
980254
Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

Research on LKAS Performance Test of Commercial Vehicle

2020-12-30
2020-01-5147
Lane keeping assist system (LKAS) is an advanced assistant driving system, which can effectively avoid unconscious lane departures caused by drivers due to distraction, fatigue driving, insensitive response to emergencies, etc., reduce traffic accidents, and effectively improve Driving safety. This paper is committed to the research of LKAS standard of commercial vehicles in China. According to the working principle of LKAS and the test and evaluation methods of LKAS at home and abroad, the LKAS test scheme of commercial vehicles was designed after repeated discussions and demonstrations in many meetings, including straight and curve test scenarios. The actual vehicle test of commercial vehicle LKAS were completed by CATARC Automotive Test Center (Tianjin) Co., Ltd. in CATARC Yancheng Automotive Proving Ground Co., Ltd. The performance of LKAS of freight cars and passenger cars under different loads was studied.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Journal Article

Modeling Combined Braking and Cornering Forces Based on Pure Slip Measurements

2012-09-24
2012-01-1924
A novel predictable tire model has been proposed for combined braking and cornering forces, which is based on only a few pure baking and pure cornering tests. It avoids elaborate testing of all kinds of combinations of braking and side forces, which are always expensive and time consuming. It is especially important for truck or other large size tires due to the capability constraints of tire testing facilities for combined shear forces tests. In this paper, the predictive model is based on the concept of slip circle and state stiffness method. The slip circle concept has been used in the COMBINATOR model to obtain the magnitude of the resultant force under combined slip conditions; however the direction assumption used in the COMBINATOR is not suitable for anisotropic tire slip stiffness.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Technical Paper

Key Items in Tire Non-Steady State Test

2002-07-09
2002-01-2231
In the paper, the Flat Plank Tire Tester of Changchun Automobile Institute is introduced. This paper, according to practical experiences, generalizes some issues in the tire's non-steady state test. In the non-steady state test, it must be assured that the footprint centerline of tire coincides with that of slid platform, which guarantees no sliding motion between tire and slid platform during the movement. Due to tire taper effect and inhomogeneous tire material, when its side slip angle is zero, side force and aligning torque are not zeros, but have initial values. Here two approaches are discussed to eliminate the side force and aligning torque. Besides, other factors in the test are put forward for discussion. Eliminating the interference can obviously improve the test accuracy. This paper also provides test curves of both pure side slip angle input and pure yaw angle input.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Technical Paper

Driver Fuzzy Decision Making Model of Vehicle Preview Course

2000-08-21
2000-01-3057
The behavior of driver course decision making is analyzed with the theory of system fuzzy decision making, and some factors that influence this behavior are studied also. Based on these, a fuzzy decision making model of driver dynamically determining vehicle preview course is given. This model can simulate the driver's control behavior of deciding the vehicle preview course in the process of driver handling the vehicle, based on the feasible region of front road. Taking advantage of fuzzy decision making theory's character, the model can describe many decision criteria such as driving safety, driving handiness and driving legality. The simulation results show that the model can be directly applied into the simulation of driver-vehicle-road closed-loop system and the research of intelligent vehicle.
Technical Paper

Developmental Driver Model for Long Vehicles Based on Preview-Follower Theory

2018-08-07
2018-01-1629
A long vehicle is more difficult to drive than a short one, but the mechanism of this phenomenon is still ambiguous. This paper will devote main effort to elaborate this phenomenon based on the theory of preview-follower driver model. Drivers always hope that the vehicle center can travel according to a predetermined trajectory. However, there is often a deviation between the vehicle center predicted by the driver and the actual center. As for this phenomenon, a conception of driver preview eccentricity is proposed. In order to analyze the influence of the proposed conception on vehicle driving track, a multi-axle steering vehicle model is built and some basic expressions of important parameters are deduced from this model firstly. Then, the developmental driver model with the factor of preview eccentricity based on preview-follower theory is established in the state of low velocity quasi-static. Subsequently, this model for long vehicles is extended to a dynamic driver model.
Technical Paper

Development of Leaf Spring Kinematical Model and Its Applications in Improvement of Truck Braking and Steering Analysis

1991-11-01
912566
This paper presents a general kinematical model for all variety of leaf springs, including traditional laminated, asymmetrical, and tapered leaf springs, to calculate the longitudinal and winding deformations of axles during bouncing, braking and traction, which may introduce additional steering effects or variations of roll-steer property of a vehicle. Some experiments were introduced to verify the model. Accordingly, braking performance of a light truck has been improved.
X