Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Yaw/Roll Stability Modeling and Control of HeavyTractor-SemiTrailer

2007-08-05
2007-01-3574
This paper sets up a simplified dynamic model for simulating the yaw/roll stability of heavy tractor-semitrailer using Matlab/Simulink. A linear quadratic regulator (LQR) based on partial-state feedback controller is used to optimize the roll stability of the vehicle. The control objective for optimizing roll stability is to be reducing the lateral load transfer rate while keeping the suspension angle less than the maximum allowable angle. The simulation result shows that the LQR controller is effective in the active roll stability control of the heavy tractor-semitrailer.
Technical Paper

Vehicle Yaw Stability Model Predictive Control Strategy for Dynamic and Multi-Objective Requirements

2024-04-09
2024-01-2324
Vehicle yaw stability control (YSC) can actively adjust the working state of the chassis actuator to generate a certain additional yaw moment for the vehicle, which effectively helps the vehicle maintain good driving quality under strong transient conditions such as high-speed turning and continuous lane change. However, the traditional YSC pursues too much driving stability after activation, ignoring the difference of multi-objective requirements of yaw maneuverability, actuator energy consumption and other requirements in different vehicle stability states, resulting in the decline of vehicle driving quality. Therefore, a vehicle yaw stability model predictive control strategy for dynamic and multi-objective requirements is proposed in this paper. Firstly, the unstable characteristics of vehicle motion are analyzed, and the nonlinear two-degree-of-freedom vehicle dynamics models are established respectively.
Technical Paper

Vehicle Mass Estimation for Heavy Duty Vehicle

2015-09-29
2015-01-2742
Aiming at estimating the vehicle mass and the position of center of gravity, an on-line two-stage estimator, based on the recursive least square method, is proposed for buses in this paper. Accurate information of the center of gravity position is crucial to vehicle control, especially for buses whose center of gravity position can be varied substantially because of the payload onboard. Considering that the buses start and stop frequently, the first stage of the estimator determines the bus total mass during acceleration, and the second stage utilizes the recursive least-square methods to estimate the position of the center of gravity during braking. The proposed estimator can be validated by the co-simulation with MATLAB/Simulink and TruckSim software, simulation results exhibit good convergence and stability, so the center of gravity position can be estimated through the proposed method in a certain accuracy range.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Journal Article

UniTire Model for Tire Forces and Moments under Combined Slip Conditions with Anisotropic Tire Slip Stiffness

2013-09-24
2013-01-2362
The tire mechanics characteristics are essential for analysis, simulation and control of vehicle dynamics. This paper develops the UniTire model for tire forces and moments under combined slip conditions with anisotropic tire slip stiffness. The anisotropy of tire slip stiffness, which means the difference of tire longitudinal slip stiffness and cornering stiffness, will cause that the direction of tire resultant shear stress in adhesion region is different from that in sliding region. Eventually the tire forces and moments under combined slip conditions will be influenced obviously. The author has proposed a “direction factor” before to modify the direction of resultant force in the tire-road contact patch, which can describe tire forces at cornering/braking combination accurately. However, the aligning moments which are very complicated under combined slip conditions are not considered in previous analysis.
Technical Paper

UniTire Model for Tire Cornering Properties under Varying Traveling Velocities

2016-09-27
2016-01-8037
The tire mechanics characteristics are essential for analysis and control of vehicle dynamics. Basically, the effects of sideslip, longitudinal slip, camber angle and vertical load are able to be represented accurately by current existing tire models. However, the research of velocity effects for tire forces and moments are still insufficient. Some experiments have demonstrated that the tire properties actually vary with the traveling velocity especially when the force and moment are nearly saturated. This paper develops an enhanced brush tire model and the UniTire semi-physical model for tire forces and moments under different traveling velocities for raising need of advanced tire model. The primary effects of velocity on tire performances are the rubber friction distribution characteristics at the tire-road interface.
Journal Article

Trajectory Planning and Tracking for Four-Wheel Independent Drive Intelligent Vehicle Based on Model Predictive Control

2023-04-11
2023-01-0752
This paper proposes a dynamic obstacle avoidance system to help autonomous vehicles drive on high-speed structured roads. The system is mainly composed of trajectory planning and tracking controllers. The potential field (PF) model is introduced to establish a three-dimensional potential field for structured roads and obstacle vehicles. The trajectory planning problem that considers the vehicle’s and tires’ dynamics constraints is transformed into an optimization problem with muti-constraints by combining the model predictive control (MPC) algorithms. The trajectory tracking controller used in this paper is based on the 7 degrees of freedom (DOF) vehicle model and the UniTire tire model, which was discussed in detail in previous work [25, 26]. The controller maintains good trajectory tracking performance even under extreme driving conditions, such as roads with poor adhesion conditions, where the car’s tires enter the nonlinear region easily.
Technical Paper

Traffic Modeling Considering Motion Uncertainties

2017-09-23
2017-01-2000
Simulation has been considered as one of the key enablers on the development and testing for autonomous driving systems as in-vehicle and field testing can be very time-consuming, costly and often impossible due to safety concerns. Accurately modeling traffic, therefore, is critically important for autonomous driving simulation on threat assessment, trajectory planning, etc. Traditionally when modeling traffic, the motion of traffic vehicles is often considered to be deterministic and modeled based on its governing physics. However, the sensed or perceived motion of traffic vehicles can be full of errors or inaccuracy due to the inaccurate and/or incomplete sensing information. In addition, it is naturally true that any future trajectories are unknown. This paper proposes a novel modeling method on traffic considering its motion uncertainties, based on Gaussian process (GP).
Technical Paper

Traction Control Logic Based on Extended Kalman Filter for Omni-directional Electric Vehicle

2012-04-16
2012-01-0251
Omni-directional electric vehicle built by our research group is an advanced electric vehicle whose four wheels can drive, steer and brake independently. The vehicle chassis system is composed of four in-wheel motors, four independent steer motors and electromagnetic brake system, and its control system is divided into logical control layer and underlying execution layer. The information exchange between these two layers is implemented by CAN bus. In this paper, the traction control logic for Omni-directional electric vehicle is developed. The study mainly involves two aspects: the vehicle states estimation and the traction control logic design. The vehicle states, including vehicle longitudinal velocity, lateral speed, side slip angle and yaw rate, etc, are estimated based on Extended Kalman Estimation and multiple degrees of freedom vehicle model.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Technical Paper

The Virtual Boosted DISI Engine Model Development Based on Artificial Neural Networks

2022-03-29
2022-01-0383
To efficiently reduce the required experimental data and improve the prediction accuracy, a virtual engine model has been built by integrating an artificial neural network (ANN) system consisting of multiple subnets with the genetic algorithm (GA). The GA algorithm could reduce the risk of local minima and lead to a more efficient training process. The engine model has been adopted to predict the combustion phases (including CA10, CA50 and CA90), exhaust gas temperature, brake specific fuel consumption rate (be) and engine emissions which are un-burnt hydrocarbon (UBHC), NOx and CO. The results are then compared with the experimental data from around 5000 operating points of a boosted DISI engine running at universal performance map and conditions with various valve timing configurations. The mean absolute errors of combustion phases are all below 1.0 crank angle degree. The averaged errors of the exhaust gas temperature and be are 10.1 K and 1.1%, respectively.
Technical Paper

The Design of Electrically Controlled Steering System Hardware-In-the-Loop Test Bench

2014-04-01
2014-01-0243
Nowadays, conventional steering system cannot meet consumers' requirements as their environmental awareness increasing. Electrically controlled steering system can solve this problem well [1] [2]. Electrically controlled steering system has been not only applied widely in automobile steering technique but also becomes an important section of automobile integrated chassis control technology. It is necessary for vehicles to test their every component repeatedly before every component assembled. So a test bench becomes an essential part for vehicle products' design and improvement. The electrically controlled steering system consists of Electric Power Steering system (EPS), Active Front Steering (AFS) and Steer by Wire (SBW). The similarity among them is containing pinion-and-rack mechanical structure, so it is viable to design a test bench suitable for these three systems. This paper takes EPS as a prototype to verify the design's availability.
Technical Paper

Study on Steering Effort Preference of Drivers Based on Driving Simulator

2007-08-05
2007-01-3575
This paper presents a study on steering effort preference of Chinese drivers based on ADSL Driving Simulator. The results of the simulation test demonstrates that Chinese drivers' steering effort preference increases with vehicle speed, which is similar to European and Japanese drivers', but the mean preference effort level itself is lower than that of European and Japanese drivers' and this same steering effort preference increases obviously with lateral acceleration in linear region (lateral acceleration level lower than 0.3g) while not as evidently in nonlinear region (lateral acceleration level higher than 0.3g).
Technical Paper

Study on Squeeze Mode Magneto-Rheological Engine Mount with Robust H-Infinite Control

2011-04-12
2011-01-0757
Magneto-rheological fluid squeeze mode investigations at CVeSS have shown that MR fluids show large force capabilities in squeeze mode. A novel MR squeeze mount was designed and built at CVeSS, and a dynamic mathematical model was developed, which considered the inertial effect and was validated by the test data. A variant engine mount that will be used for isolating vibration, based on the MR squeeze mode is proposed in the paper. The mathematical governing equations of the mount are derived to account for its operation with MR squeeze mode. The design method of a robust H✓ controller is addressed for the squeeze mount subject to parameter uncertainties in the damping and stiffness. The controller parameter can be derived from the solution of bilinear matrix inequalities (BMIs). The displacement transmissibility is constrained to be no more than 1.05 with this robust H✓ controller. The MR squeeze mount has a very large range of force used to isolate the vibration.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
Technical Paper

Study on Braking Force Distribution Algorithm for Hybrid Electric Bus Based on EBS

2013-04-08
2013-01-0411
In order to improve the braking energy recovery, a parallel hybrid electric bus simulation model with electric braking system (EBS) was established by co-simulation platform for the TruckSim and Matlab/Simulink in this paper. EBS makes the front and rear shaft braking force arbitrarily distributed, which is more effective to improve the rate of energy recovery and the braking stability. A braking force distribution algorithm for hybrid electric bus based on EBS was designed in this paper. Under the premise to meet the driver's needs and the ECE regulations, this braking force distribution method focuses on making the braking force distribute to the drive shaft to a maximum extent, so as to obtain the maximum energy recovery rate by the utilization of the motor regenerative braking. At last, the simulation in different operating conditions was used to analyze the braking energy utilization and the braking performance based on the simulation model.
Technical Paper

Steering Control Based on the Yaw Rate and Projected Steering Wheel Angle in Evasion Maneuvers

2018-04-03
2018-01-0030
When automobiles are at the threat of collisions, steering usually needs shorter longitudinal distance than braking for collision avoidance, especially under the condition of high speed or low adhesion. Thus, more collision accidents can be avoided in the same situation. The steering assistance is in need since the operation is hard for drivers. And considering the dynamic characteristics of vehicles in those maneuvers, the real-time and the accuracy of the assisted algorithms is essential. In view of the above problems, this paper first takes lateral acceleration of the vehicle as the constraint, aiming at the collision avoidance situation of the straight lane and the stable driving inside the curve, and trajectory of the collision avoidance is derived by a quintic polynomial.
Technical Paper

Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving

2024-04-09
2024-01-2563
In the field of autonomous driving trajectory planning, it’s virtual to ensure real-time planning while guaranteeing feasibility and robustness. Current widely adopted approaches include decoupling path planning and velocity planning based on optimization method, which can’t always yield optimal solutions, especially in complex dynamic scenarios. Furthermore, search-based and sampling-based solutions encounter limitations due to their low resolution and high computational costs. This paper presents a novel spatio-temporal trajectory planning approach that integrates both search-based planning and optimization-based planning method. This approach retains the advantages of search-based method, allowing for the identification of a global optimal solution through search. To address the challenge posed by the non-convex nature of the original solution space, we introduce a spatio-temporal semantic corridor structure, which constructs a convex feasible set for the problem.
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

1998-02-01
980254
Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
X