Refine Your Search

Topic

Search Results

Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

2017-03-28
2017-01-1400
Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Vacuum Cleaning Vehicle Dust Subsidence System Design

2014-04-01
2014-01-0750
Vacuum cleaning vehicle is the necessary equipment for the Municipal Sanitation Department to keep the road surface clean and the dust subsidence system is the heart unit for the proper function of the cleaning vehicle. The reasonable design of this system could increase the load capacity of the vehicle and be convenient for the garbage collecting and dumping. Meanwhile, the engine power could be relatively reduced and the influence on the environment duo to the dusty air in the outlet could be also effectively improved. In the study, the gravity dedusting principle is used firstly for structure design to reduce the flow rate of dust particles inside the lower part of the dust subsidence system. The ruleless collision loss among dust particles is reduced and thereby the fan power is saved. By means of a reasonable separated chamber design and the use of inertia baffle, the sort management for dust particles is developed and the work stress of the export filter is released observably.
Technical Paper

Thermoelectric Module Temperature Stability Control for the Vehicle Engine Exhaust Heat Recovery

2015-04-14
2015-01-0350
The vehicle engine exhaust wastes heat. For the conventional scheme, the hot-end of the thermoelectric module is connected with the exhaust pipe, while the cold-end is cooled through the vehicle engine cooling cycle. The variation of vehicle engine operating conditions brings the instability of the hot-end temperature, which affects the power generation performance of thermoelectric materials and increases the damage risk to the thermoelectric materials caused by the high temperature. This research adopts the heat transfer oil circulation as the intermediate fluid to absorb the dynamic heat flux of the vehicle engine exhaust so as to release the heat steadily to the hot-end of the thermoelectric module. The thermal characteristics of the target diesel vehicle engine exhaust gas are evaluated based on the experimental data firstly.
Technical Paper

Thermal Stability Research of Vehicle Exhaust Waste-Heat Recovery System with Intermediate Medium

2016-04-05
2016-01-0228
Vehicle exhaust waste-heat recovery with thermoelectric power generators can improve energy efficiency, as well as vehicle fuel economy. In the conventional structure, the hot-end of thermoelectric module is directly connected with the outer wall of the exhaust pipe, while the cold-end is connected with the water pipe’s outer wall of the vehicle engine cooling cycle. However, the variety of vehicle engine operating conditions leads to the instability of the hot-end temperature, which will reduce the generating efficiency of the thermoelectric modules and also shorten its service life. This research is on the basis of constructing a heat transfer oil circulation, and to study the action principles and implementation methods of it.
Technical Paper

The TEG Hot-End Heat Capacity’s Effect on the Power Output Stability for Harvesting Automobile Exhaust Energy

2017-03-28
2017-01-0160
While the car ownership increasing all over the world, the unutilized thermal energy in automobile exhaust system is gradually being realized and valued by researchers around the world for better driving energy efficiency. For the unexpected urban traffic, the frequent start and stop processes as well as the acceleration and deceleration lead to the temperature fluctuation of the exhaust gas, which means the unstable hot-end temperature of the thermoelectric module generator (TEG). By arranging the heat conduction oil circulation at the hot end, the hot-end temperature’s fluctuation of the TEG can be effectively reduced, at the expense of larger system size and additional energy supply for the circulation. This research improves the TEG hot-end temperature stability by installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, none energy consumption and light weight.
Technical Paper

The Study on Co-Simulation Based Tracked Vehicle Path Tracking Control

2015-04-14
2015-01-1114
The tracked vehicle with a fully hydraulic driving system, which has a strong traveling performance of passing and mobility ability in the complex terrain, is a typical system of mechanical-electrical-hydraulic integration. At the same time, for the good low-speed stability of the hydraulic system, this vehicle is widely applied in most engineering projects. However, for the complexity and unpredictability of the motion state in the complex environment and the power matching of the driving system, the driving path of the tracked vehicle with hydraulic driving is difficult to control. Moreover, for the complicated interaction between mechanics, the establishment of the mathematical model is much more complex, and the traditional mechanics-control and hydraulic-control co-simulation can not accurately simulate this physical phenomenon. The kinematic and dynamics characteristics of the tracked vehicle are studied firstly, and the dynamics model is built.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

The Research of the Heavy Truck’s Warming System

2017-10-08
2017-01-2221
It’s not easy to start the engine in winter, especially in frigid highlands, because the low temperature increases the fuel’s viscosity, decreasing the lubricating oil flow ability and the storage performance of battery. Current electrical heating method can improve the engine starting performance in low temperature condition, but this method adds an external power to the engine, leading to the engine cannot maintain an efficient energy utilization. A warming device using the solar energy is designed to conserve the energy during the daytime, and directly warm up the engine at the time when the engine turns off for a long time, especially during the night. A solar collector installed on the top of the vehicle is used to convert the solar energy to the thermal energy, which is then transferred to the heat accumulator that contain the phase-change medium which can increase the heat storage performance.
Technical Paper

The Research of the Adaptive Front Lighting System Based on GIS and GPS

2017-03-28
2017-01-0041
Automotive Front Lighting System(AFS) can receive the steering signal and the vehicular speed signal to adjust the position of headlamps automatically. AFS will provide drivers more information of front road to protect drivers safe when driving at night. AFS works when there is a steering signal input. However, drivers often need the front road's information before they turn the steering wheel when vehicles are going to go through a sharp corner, AFS will not work in such a situation. This paper studied how to optimize the working time of AFS based on GIS (Geographic Information System) and GPS(Geographic Information System) to solve the problem. This paper analyzed the process of the vehicle is about to go through a corner. Low beams and high beams were discussed respectively.
Technical Paper

The Research of Solar Organic Rankine Evaporation Cycle System for Vehicle

2016-04-05
2016-01-1268
With the help of organic working medium absorbing the solar energy for steam electric power generation, green energy can be provided to automotive accessories so as to improve the vehicle energy efficiency. In the hot summer, the exhausted heat resulting from cars’ directly exposing to the sun can be used to cool and ventilate the passenger compartment. Considering the space occupied by the system in the combination of both practical features for solar heat source--low power and poor stability-- a compact evaporation structure was designed to enhance the solar utilization efficiency. In the research, the heat source of power and temperature variation range was determined by the available solar roof with photo-thermal conversion model. Then started from the ratio of exhausted heat utilization corresponding to evaporator’s characteristic parameter, the performance analysis was made in the different working conditions.
Technical Paper

The Performance Study of Air-Friction Reduction System for Hydraulic Retarder

2014-09-30
2014-01-2283
The hydraulic retarder, which is an auxiliary brake device for enhancing traffic safety, has been widely used in kinds of heavy commercial vehicles. When the vehicle equipped with the retarder is traveling in non-braking state, the transmission loss would be caused because of the stirring air between working wheels of the rotor and the stator no matter if the retarder connects in parallel or in series with the transmission [1]. This paper introduces an elaborate hydraulic retarder air-friction reduction system (AFRS) which consists of a vacuum generating module and pneumatic control module. AFRS works to reduce the air friction by decreasing the gas density between working wheels when the retarder is in non-braking state. The pneumatic control model of hydraulic retarder is built first. Then various driving conditions are considered to verify the performance of the AFRS. The stability of the AFRS is analyzed based on the complete driveline model.
Technical Paper

The Organic Medium Physical State Analysis for Engine Exhaust Thermal Recovery

2015-04-14
2015-01-1610
The Organic Rankine Cycle System is an effective approach for recovering the engine exhaust thermal energy. The physical characteristic of the Rankine fluid is the key factor for the capacity and the stability of the expander power output. In the research, the influences of the evaporator organic medium state and flow rate on the expander power output are fully analyzed for the sufficient utilization of the waste thermal energy. Firstly, the exhaust characteristics of the diesel engine were processed by the data of the bench test. Then, the integral mathematical model of the Organic Rankine Cycle was built. Based on the comparison for the 2-zone and 3-zone evaporator, the influence for expander output are analyzed especially emphasis on the factors of engine working condition, the flow rate, temperature and state of Rankine fluid.
Technical Paper

The Measures of Improving Power Generation Stability for Harvesting Automobile Exhaust Energy

2018-04-03
2018-01-1367
The automobile exhaust energy can be recovered by the thermoelectric module generator(TEG). Owing to the complex urban traffic, the exhaust gas’s temperature fluctuations are resulted, which means the unstable hot-end temperature of the TEG. By installing solid heat capacity material(SHCM) to the area between the outer wall of the exhaust pipe and the TEG, it is possible to appropriately reduce the temperature fluctuation, but there is still a fluctuation of the TEG’s power output. Then by adding voltage filter circuit (VFC) after the TEG, the power output stability can be improved. This research uses SHCM and VFC to improve the stability of the exhaust gas generation. Firstly, the three-dimensional heat transfer model of the exhaust pipe thermoelectric power generation system is established. The heat capacity materials with low thermal resistance and high heat capacity were selected as the research object based on previous research.
Technical Paper

The Finite Element Analysis and Optimization on a Special Vehicle

2015-04-14
2015-01-0473
According to the resonant pavement crusher's work principle, its front frame mounted with the resonance system must meet the needs of the structural requirements. To satisfy the strength and stiffness requirement and avoid the resonance, the natural frequency of the front frame should be designed away from the crusher's working frequency. In this paper, the author builds a finite element model of the front frame and analyses its modal. According to the modal analysis results, the fourth modal frequency is close to the working frequency of the crusher. So the front frame should be optimized. In the finite element model, the front frame has been divided into a number of components of shell elements. Through optimal Latin hypercube experimental design, the author analyses the different component thickness's relationship of the frequencies of the front frame. The components with higher correlation coefficient have been chosen as the variables of optimization.
Technical Paper

The Experimental Study and Performance Analysis of Air-Friction Reduction System for Hydraulic Retarder

2015-04-14
2015-01-1127
The hydraulic retarder is an important auxiliary braking device for the heavy vehicle, which has some characteristics, such as the big brake torque and long duration braking, when the vehicle is traveling in braking state. However, the transmission power loss will be produced when the vehicle is traveling in non-braking state. This transmission power loss is called Air-friction. Firstly, the air flow distribution characteristics of retarder cavity are studied by computational fluid mechanics, and the Air-friction characteristic in different conditions is analyzed. Then, according to the Air-friction characteristics for the condition of different filling density, a set of vacuum air loss reduction system is designed. Meanwhile, the test bench for retarder Air-friction is set up, the test data of the revolution speed, pressure in cavity and air loss resistance is obtained according to the test bench for hydraulic retarder.
Journal Article

The Energy Management for Solar Powered Vehicle Parking Ventilation System

2015-04-14
2015-01-0149
In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
Technical Paper

The Effect of Commercial Vehicle Head-Up Display Reminding System on Driving Safety in Mountainous Area

2017-09-17
2017-01-2500
Head-up Display (HUD) system can avoid drivers’ distraction on dashboard and effectively reduce collisions caused by emergency events, which is gradually being realized by researchers around the world. However, the current HUD only displays information like speed, fuel consumption, other information like acceleration and braking can’t be displayed yet. This research will use the indicator symbol‘s color and position change to remind drivers to brake or accelerate. Drivers can do driving operation timely and accurately. The system has the advantages of safety, intuition and real-time. The vehicle safe speed is calculated according to the road parameters, like adhesion coefficient and slope, and vehicle parameters, such as vehicle mass and centroid. Then, the appropriate braking operations are obtained by combining the vehicle driving state. The braking information is corresponded to the color and position change of the indicator symbol to prompt the drivers by the HUD interface.
Technical Paper

The Design and Realization of Steam Turbine Blade CAD/CAM System

2021-04-06
2021-01-0816
The turbine blade is a key component in the operation of the steam turbine hence the design and manufacturing level of the blade will directly affect the performance and efficiency of the turbine. CAD/CAM has been the foundation and important part of advanced manufacturing technology. It is important to study the steam turbine blade integrated CAD/CAM system to improve the design and manufacture of the blade. In this paper, the structure of CAD/CAM system for steam turbine blade is studied and the extensible framework structure including user layer, functional layer and system layer is proposed. Based on the control points of the turbine blade profile design method, and based on the expression between the three-dimensional parametric vector modeling method in UG-based platform, the use of UG/Open development tools and Visual C # developed a turbine blade CAD system.
X