Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Technical Paper

Upper-Extremity Injuries From Steering Wheel Airbag Deployments

1997-02-24
970493
In a review of 540 crashes in which the steering-wheel airbag deployed, 38% of the drivers sustained some level of upper extremity injury. The majority of these were AIS-1 injuries including abrasions, contusions and small lacerations. In 18 crashes the drivers sustained AIS-2 or-3 level upper extremity injuries, including fractures of the radius and/or ulna, or of the metacarpal bones, all related to airbag deployments. It was determined that six drivers sustained the fracture(s) directly from the deploying airbag or the airbag module cover. The remaining 12 drivers had fractures from the extremity being flung into interior vehicle structures, usually the instrument panel. Most drivers were taller than 170 cm and, of the 18 drivers, 10 were males.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

The Position of the United States Delegation to the ISO Working Group 6 on the Use of HIC in the Automotive Environment

1985-06-01
851246
A review and analysis of existing cadaver head impact data has been conducted in this paper. The association of the Head Injury Criterion with experimental cadaver skull fracture and brain damage has been investigated, and risk curves of HIC versus skull fracture and brain damage have been developed. Limitation of the search for the maximum HIC duration to 15ms has been recommended for the proper use of HIC in the automotive crash environment.
Technical Paper

The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests

2014-11-10
2014-22-0007
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test.
Technical Paper

The Effects of Skull Thickness Variations on Human Head Dynamic Impact Responses

2001-11-01
2001-22-0018
Variations in human skull thickness affecting human head dynamic impact responses were studied by finite element modeling techniques, experimental measurements, and histology examinations. The aims of the study were to better understand the influences of skull thickness variations on human head dynamic impact responses and the injury mechanisms of human head during direct impact. The thicknesses of the frontal bone of seven human cadaver skulls were measured using ultrasonic technology. These measurements were compared with previous experimental data. Histology of the skull was recorded and examined. The measured data were analyzed and then served as a reference to vary the skull thickness of a previously published three-dimensional finite element human head model to create four models with different skull thickness. The skull thicknesses modeled are 4.6 mm, 5.98 mm, 7.68 mm, and 9.61 mm.
Technical Paper

Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III

2002-11-11
2002-22-0012
Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

Simulation of Head/Neck Impact Responses for Helmeted and Unhelmeted Motorcyclists

1981-10-01
811029
The purpose of this study was to assess, by use of computer simulations, the effectiveness of motorcycle helmets in reducing head and neck injuries in motorcyclist impacts. The computer model used was the MVMA Two-Dimensional Crash Victim Simulator. The study investigated a wide variety of impact conditions in order to establish a broad overall view of the effectiveness of helmets. It was found that helmet use invariably reduces dynamic responses which have a role in producing head injury and, in addition, almost always reduces the severity of neck response as well. For no configuration or condition does the helmet greatly increase the likelihood of neck injury. Thus, these simulations of a wide spectrum of motorcyclist impacts provide further evidence that helmet use significantly reduces the likelihood and severity of both head and neck injuries. This study was supported by the Insurance Institute for Highway Safety.
Technical Paper

Simulation Analysis of Head and Neck Dynamic Response

1984-10-01
841668
The objectives of this study are to quantify the biomechanical properties of the human neck which govern head and neck dynamic response and to establish the mechanisms responsible for primary aspects of response. Computer simulations with the MVMA 2-D and VOM 3-D occupant dynamics models were performed using head and neck sled input response data from human subjects at the Naval Biodynamics Laboratory for input and comparison. Predicted dynamic response data and preliminary values for biomechanical parameters in a three-dimensional head/neck model capable of accurately simulating response for −X, +Y, and −X+Y sled acceleration vectors are presented. The established analytical model should accurately predict head and neck responses in simulations of real-world automobile crashes where direct head impact is not involved. Additionally, the model can be used to assist in development of a design plan for the neck of advanced anthropomorphic test dummies.
Technical Paper

Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA

2015-11-09
2015-22-0004
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV’s), and medium-to-heavy vehicles (MHV’s) in the fleet, and the frequency of their interactions with one another in side impacts, were considered.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

Predictions of AIS3+ Thoracic Risks for Belted Occupants in Full-Engagement, Real-World Frontal Impacts: Sensitivity to Various Theoretical Risk Curves

2003-03-03
2003-01-1355
A new, AIS3+ thoracic risk equation based on chest deflection was derived and assessed for drivers subjected to concentrated (belt-like) loading. The new risk equation was derived from analysis of an existing database of post mortem human subjects in controlled, laboratory sled tests. Binary logistic regression analysis was performed on a subset of the data, namely, 25th-75th percentile men (by weight) from 36-65 years old whose thoracic deformation patterns were due to concentrated (belt-like) loading. Other subsets of data had insufficient size to conduct the analysis. The resulting thoracic risk equation was adjusted to predict the AIS3+ thoracic risks for average-aged occupants in frontal crashes (i.e., 30 years old). Biomechanical scaling was used to derive the corresponding relationships for the small female and large male dummies. The new thoracic risk equations and three other sets of existing equations were evaluated as predictors of real-world crash outcomes.
Technical Paper

Prediction of Airbag-Induced Forearm Fractures and Airbag Aggressivity

2001-11-01
2001-22-0024
This study continued the biomechanical investigations of forearm fractures caused by direct loading of steering-wheel airbags during the early stages of deployment. Twenty-four static deployments of driver airbags were conducted into the forearms of unembalmed whole cadavers using a range of airbags, including airbags that are depowered as allowed by the new federal requirements for frontal impact testing. In general, the depowered airbags showed a reduction in incidence and severity of forearm fractures compared to the pre-depowered airbags tested. Data from these twenty-four tests were combined with results from previous studies to develop a refined empirical model for fracture occurrence based on Average Distal Forearm Speed (ADFS), and a revised value for fifty-percent probability of forearm-bone fracture of 10.5 m/s. Bone mineral content, which is directly related to forearm tolerance, was found to be linearly related to arm mass.
Technical Paper

Prediction and Analysis of Human Thoracic Impact Responses and Injuries in Cadaver Impacts Using a Full Human Body Finite Element Model

2003-10-27
2003-22-0014
Human thoracic dynamic responses and injuries associated with frontal impact, side impact, and belt loading were investigated and predicted using a complete human body finite element model for an average adult male. The human body model was developed to study the impact biomechanics of a vehicular occupant. Its geometry was based on the Visible Human Project (National Library of Medicine) and the topographies from human body anatomical texts. The data was then scaled to an average adult male according to available biomechanical data from the literature. The model includes details of the head, neck, ribcage, abdomen, thoracic and lumbar spine, internal organs of the chest and abdomen, pelvis, and the upper and lower extremities. The present study is focused on the dynamic response and injuries of the thorax.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
X