Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 34406
Technical Paper

“U” Bolt Torque Influence over Leaf Springs

2014-05-07
2014-36-0024
”U” bolts are fixing elements and they are used to clamp an elastic joint. From the past, they still looking as an old design and unfortunately, suspension engineers are not specialists in fasteners and elastic joints. That is why we will show important assumptions and concepts to design and specifications this clamp element “U” bolt and its influence over leaf-springs. Currently, “U” bolt is used to clamp an elastic or elastic-plastic joint of heavy duty suspension, formed by leaf-spring, axle, spring pad, “U” bolt plate. This kind of suspension is typically used to trucks, buses and trailers. We are wondering, which one important assumption that an engineer must be careful when designs a new suspension changing from old designs to an updated technology. We provide a theoretical analysis and a FEA analysis to compare torque efficacy x leaf-spring reactions and what are effects this relationship can cause in a suspension.
Journal Article

“Sticky” Lining – the Phenomena, Mechanism and Prevention

2008-04-14
2008-01-0819
An unique bonding mechanism was studied after several instances, where the linings stuck to the brake drums on transit buses, were reported. Evidences suggested that the linings were “glued” to the brake drums surface after wear debris (dust) was turned into “adhesive paste” through complicated thermal and chemical changes. Factors such as the friction materials, environment and service conditions, which could activate and deactivate the lining bonding, were observed and discussed. The prevention measures are proposed.
Technical Paper

“Smart sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines

2000-03-06
2000-01-1366
Proper lubrication of moving parts is a critical factor in internal combustion engine performance and longevity. Determination of ideal lubricant change intervals is a prerequisite to ensuring maximum engine efficiency and useful life. When oil change intervals are pushed too far, increased engine wear and even engine damage can result. On the other hand, premature oil changes are inconvenient, add to vehicle maintenance cost, and result in wasted natural resources. In order to determine the appropriate oil change interval, we have developed an oil condition sensor that measures the electrical properties of engine oil, and correlates these electrical properties to the physical and chemical properties of oil. This paper provides a brief background discussion of the oil degradation process, followed by a description of the sensor operational principles and the correlation of the sensor output with physical and chemical engine oil properties.
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“One-Side Aluminized Steel Sheet” Development and Properties of a New Anti-Corrosion Material

1983-02-01
830519
Nisshin Steel Co., Ltd. has developed a new process for the production of a “one-side aluminized steel sheet”. The process utilizes a double layer one-side “stop-off” coating to prevent the molten Al from adhering to the steel surface. The “Stop-off” coating is removed by simple mechanical brushing after hot dipping. The characteristics of this product by above mentioned process are: 1) The steel side was as clean as a conventional cold rolled surface and showed no trace of the “stop-off” layer. Thereby, phosphating and ED painting were performed. 2) In the salt spray test data was obtained from zinc and Al coated steel surfaces; the coatings on both surfaces being of equal thickness.
Technical Paper

“Nucleate Boiling Investigations and the Effects of Surface Roughness”

1999-03-01
1999-01-0577
The findings presented in this paper are part of a long term project aimed at raising the science of heat transfer in internal combustion engine cooling galleries. Initial work has been undertaken by the authors and an experimental facility is able to simulate different sizes of coolant passages. External heat is applied and data for the forced convective, nucleate boiling and transition or critical heat flux (CHF) regimes has been obtained. The results highlighted in this paper attempt to quantify the effects of cooling passage surface roughness on the nucleate boiling regime. Tests have been conducted using aluminium test pieces with surface finishes described as smooth, intermediate and as-cast. It has been found that the as-cast surface increases the heat flux density in the nucleate boiling region over that of the smooth and intermediate surfaces.
Technical Paper

“Motion in FEA”: An Innovative Approach for More Physical and More Accurate Vehicle Dynamics Simulation

2012-04-16
2012-01-0762
Vehicle dynamics is a discipline of mechanical engineering that benefited of significant improvements thanks to the progress of computational engineering. Vehicle dynamics engineers are using CAE for the development of a vehicle with MBS and FEA. The concurrent use of these two technologies is a standard in the automotive industry. However the current simulation process is not fully efficient because local geometrical and material nonlinearities are not accurately modeled in classical MBS software. This paper introduces a methodology for vehicle dynamics simulation integrating MBS capabilities in one single nonlinear FEA environment enabling an accurate modeling of nonlinearity in vehicles.
Technical Paper

“MONOGAL”: A New Anti-Corrosion Material for the Automotive Industry

1982-02-01
820335
MONOGAL is a coated steel developped to improve the corrosion resistance of exposed automotive body applications. Its process os based on the brittleness of the η zinc coating in a range of temperatures below the melting point of the zinc. MONOGAL is produced on a hot dip galvanizing line; at the exit of the pot the free zinc is brushed off the light side of the differentially coated sheet. Side 1 of MONOGAL presents a very thin and continuous layer of iron-zinc diffusion alloy with no free zinc. Side 2 is a standard G90 or G60 zinc coating. The iron-zinc alloy layer has excellent anti-galling properties which improve the formability of MONOGAL over two side hot dip galvanized steel with the same r value. MONOGAL also shows good weldability, paintability and corrosion resistance.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

“Experimental Investigation on the Properties of Briquettes Made from Ideal Municipal Waste: An Alternate Fuel”

2023-11-10
2023-28-0060
Energy demand climbs as a consequence of the inherent relationship between the rate of consumption of energy and the growth of the economy. In light of the depletion of fossil fuels, it is necessary to implement energy efficiency techniques and policies that support sustainable development. Globally, researchers show more interest in discovering fossil fuel alternatives, as a result of fuel crisis. This research elaborates on the production and experimental investigation of briquettes made from ideal municipal solid waste (MSW), such as food waste and garden waste, as a feasible choice for alternate fossil fuels. From Municipal, agricultural, and food waste, we can get biomass waste. Municipal solid and agricultural waste is extensively dispersed, but their potential for converting biomass into energy generation still needs to be explored. This study was carried out based on the information gathered from various studies published in the scientific literature.
Technical Paper

“DELRIN” ACETAL RESIN —a new engineering material

1959-01-01
590033
“DELRIN” is a new thermoplastic which offers high strength, excellent thermal stability, good fatigue life, low creep, and excellent solvent resistance. This paper describes the physical and chemical properties of the material, and the range of possible uses. The material is easily fabricated into complex shapes by standard injection-molding techniques. Also, it can be easily joined to itself or to other materials. The authors think that the material offers advantages over metals in its good fric-tional properties, abrasion resistance, and corrosion resistance.
Technical Paper

“Cromard” Thin Wall Steel Liners and Hard Chrome Plated Liners for High Production Gasoline and Diesel Engines

1964-01-01
640361
This paper, confined to the application of hard chrome plated liners to high-speed four-stroke diesel and gasoline engines, illustrates the increase in their popularity in the United Kingdom, and the advanced production methods which make this economically possible. The need for balanced engine life has long been apparent and is even more important today, the growth of motor transport having outstripped repair facilities. Iron bore life has been surpassed by improvement in the life of other component parts in the modern diesel engine. The provision of hard chrome plated liners can restore the balance. Further development and turbocharging of diesel engines has shown the need for a bore material capable of preventing scuffing and galling at elevated temperatures. Hard chrome has already proved itself in four-stroke engines under these conditions.
Technical Paper

“Aluminium Hot Forming: - Opportunities and Challenges in Automotive Light Weighting”

2023-05-25
2023-28-1304
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming.
Technical Paper

“ACCU-DRIVE” STABILITY WITH COMFORT THE 1969 BUICK CHASSIS

1969-02-01
690490
Buick engineers are well pleased with their '69 Chassis. Benefits of a unique front suspension camber curve are documented. The effects of various suspension parameters on ride and handling are explained. These were varied independently of one another in the course of evaluating over 30 suspension configurations.
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
X