Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Thermal Stresses in Ceramic Wall Flow Diesel Filters

1983-02-01
830079
Thermal stresses constitute a major portion of the total stress which the ceramic wall flow filter experiences in service. The primary source of these stresses is the temperature gradients, both in radial and axial directions, which attain their maximum values during regeneration. The level of particulate loading, the flow rate, the filter size and the mounting design govern the severity of temperature gradients which, together with physical properties and aspect ratio of the filter, dictate the magnitude and distribution of thermal stresses. The filter, the mounting, and the regeneration conditions should be so designed as to minimize these stresses to insure reliable and fracture free performance of the filter throughout the lifetime of the vehicle. In this paper we present a thermal stress model, based on finite element method, which computes stresses in the axisymmetric filter subjected to linear or step temperature gradients in radial and axial directions.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

Substrate/Washcoat Interaction in Thin Wall Ceramic Substrates

1999-01-13
990013
Stringent emissions standards for HC, CO and NOx have necessitated the development of thin wall ceramic substrates which offer higher surface area, larger open frontal area and lower thermal mass. Such substrates offer the additional benefit of being compact which make them ideal for manifold mounting in the engine compartment. These attributes of ceramic substrates, following washcoat and catalyst application, translate directly into quick light-off, high conversion efficiency and low back pressure. To preserve these advantages at high operating temperature and still meet 100,000 mile vehicle durability, the thermomechanical interaction between the substrate and thin wall washcoat system must be managed carefully via formulation, % loading and the calcination process. This paper presents the physical properties data for thin wall ceramic substrates before and after the washcoat application.
Technical Paper

Size Effect on the Strength of Ceramic Catalyst Supports

1992-10-01
922333
The typical ceramic catalyst support for automotive application has a total volume of 1640 cm3. Approximately 10% of this volume is subjected to tensile thermal stresses due to a radial temperature gradient in service [1]*. These stresses are kept below 50% of the substrate strength to minimize fatigue degradation and to ensure long-term durability [2]. However, the tensile strength measurements are carried out in 4-point bending using 2.5 cm wide x 1.2 cm thick x 10 cm long modulus of rupture bars in which the specimen volume subjected to tensile stress is merely 3.2 cm3 or 0.2% of the total substrate volume [3]. Thus, a large specimen population is often necessary (50 specimens or more) to obtain the strength distribution representative of full substrate. This is particularly true for large frontal area substrates for diesel catalyst supports with an order of magnitude larger stressed volume. In this paper, the modulus of rupture data are obtained as function of specimen size.
Technical Paper

Robust Packaging System for Diesel/Natural Gas Oxidation Catalysts

1996-02-01
960471
The 290,000 vehicle-mile durability requirement for diesel/natural gas oxidation catalysts calls for robust packaging systems which ensure a positive mounting pressure on the ceramic flow-through converter under all operating conditions. New data for substrate/washcoat interaction, intumescent mat performance in dry and wet states, and high temperature strength and oxidation resistance of stainless steels, and canning techniques insensitive to tolerance stack-up are reviewed which help optimize packaging durability. Factors contributing to robustness of converter components are identified and methods to quantify their impact on design optimization are described. CERAMIC FLOW-THROUGH catalysts for diesel exhaust aftertreatment have met with much success since their introduction in 1993.
Technical Paper

Physical Durability of Thin Wall Ceramic Substrates

1998-10-19
982635
Significant advances in composition and the manufacturing process have led to thin wall cordierite ceramic substrates with low thermal mass, high surface area, and large open frontal area-properties that are critical for fast light-off, high conversion efficiency and low back pressure. Indeed, such substrates are ideal catalyst supports for meeting the ever-stringent emissions regulations, ala SULEV and ULEV, as demonstrated by recent performance data1. This paper focuses on the physical durability of 400/4 and 600/4 cordierite ceramic substrates. In particular, it presents strength, fatigue, and modulus data which influence the mechanical durability. In addition, it presents thermal expansion data which impact the thermal durability. Both of these durabilities are examined as a function of operating temperature.
Technical Paper

Performance Parameters for Advanced Ceramic Catalyst Supports

1999-10-25
1999-01-3631
The stringent emissions legislation has necessitated advances in the catalytic converter system comprising the substrate, washcoat technology, catalyst formulation and packaging design. These advances are focused on reducing light-off emissions at lower temperature or shorter time, increasing FTP efficiency, reducing back pressure and meeting the mechanical and thermal durability requirements over 100,000 vehicle miles. This paper reviews the role of cordierite ceramic substrate and how its design can help meet the stringent emissions legislation. In particular, it compares the effect of cell geometry and size on performance parameters like geometric surface area, open frontal area, hydraulic diameter, thermal mass, heat transfer factor, mechanical integrity factor and thermal integrity factor - all of which have a bearing on emissions, back pressure and durability. The properties of advanced cell configurations like hexagon are compared with those of standard square cell.
Technical Paper

New Developments in Diesel Oxidation Catalysts and Diesel Particulate Filters

2003-01-18
2003-26-0017
Stringent emissions legislation for diesel-powered vehicles, soon to go into effect, has led to new advances in both Diesel Oxidation Catalysts (DOC) and Diesel Particulate Filters (DPF). This paper reviews some of the new developments in DOC support design which lead to improved light-off behavior and higher overall emissions performance through lower thermal mass, higher Geometric Surface Area (GSA) and larger Open Frontal Area (OFA) than those afforded by the standard cordierite 400/6.5 cell configuration. The four different DOC supports examined in this paper include 400/4, 200/8, 300/8 and 400/6.5 - the last one serving as baseline.
Technical Paper

High Temperature Fatigue in Ceramic Wall-Flow Diesel Filters

1985-02-01
850010
Under certain operating conditions when the combined stresses in a ceramic wall-flow diesel filter from mechanical, thermal, and vibrational loads exceed its threshold strength, the fatigue effects become important. This paper reviews the theory of static and dynamic fatigue, and presents fatigue data for Coming's high efficiency filter composition (EX-47, 100/17) in the temperature range 25° - 400°C which is representative of the stressed peripheral region during regeneration. The measurement and analysis of fatigue data, together with the implication on long-term durability of cordierite ceramic filters, is discussed.
Technical Paper

High Temperature Fatigue in Ceramic Honeycomb Catalyst Supports

1985-10-01
852100
The high temperature dynamic fatigue data for the catalyst support composition, EX-20, 400/6.8, are presented. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near 200°C. The major impact of high temperature fatigue is the slow degradation of substrate’s initial strength while in service. Such a degradation must be taken into account in designing the total converter package to meet life requirements. For the EX-20, 400/6.8 substrate, approximately 50% of its initial strength is available to withstand the combined stresses from mechanical, thermal, and vibrational loads in service. At temperatures well above 200°C, the available design strength can be as high as 65% of substrate’s initial strength. The fatigue theory, the measurement technique, and the application of fatigue data to long term durability of cordierite substrates are discussed.
Technical Paper

Experimental Verification of Residual Compression in Tempered Automotive Glass with Holes

2003-01-18
2003-26-0012
Tempered float glass is commonly used for both side windows and backlites in the automotive industry. The success of such products is primarily attributed to high level of residual compression, following tempering, which provides abrasion resistance as well as 3X higher functional strength to sustain mechanical, vibrational and thermal stresses during the vehicle's lifetime. Certain applications of tempered glass, however, require mounting holes whose surface-finish must be controlled carefully to withstand transient tensile stresses during tempering. Simultaneously, the nature and magnitude of residual compression at the hole must provide sufficient robustness to bear mounting, vibrational and thermal stresses throughout the life of the vehicle. This paper presents (i) analysis of residual compression at the hole, (ii) measurement of biaxial strength of annealed glass with hole at center, and (iii) measurement of biaxial strength of tempered glass with hole at center.
Technical Paper

Dynamic Fatigue Data for Cordierite Ceramic Wall-Flow Diesel Filters

1991-02-01
910135
The dynamic fatigue data for two different cordierite ceramic wall-flow diesel filter compositions, EX-54 and EX-66, are obtained at 200° and 400°C using the 4-point bend test. These compositions offer larger mean pore size and experience lower pressure drop than the EX-47 composition, and hence are more desirable for certain applications. Their fatigue behavior in the operating temperature range is found to be equivalent or superior to that of EX-47 composition which helps promote filter durability. The fatigue data are used to arrive at a safe allowable stress, which would ensure the required 290K vehicle mile durability. The paper also discusses the impact of mean pore size on high temperature strength and fatigue properties and their effect on filter durability.
Technical Paper

Ceramic Converter Technology for Automotive Emissions Control

1991-09-01
911736
This paper reviews the development and successful application of ceramic catalytic converters for controlling automotive exhaust emissions. It presents the scientific rationale for designing the high surface area substrate to meet both performance and durability requirements. This is followed by a step-by-step design process for each of the converter components. The initial design stage focuses on understanding automaker's requirements and optimizing component design commensurate with them. The intermediate stage involves laboratory testing of converter components in simulated environment and ensuring component compatibility from durability point of view. The final design stage addresses the critical tests on converter assembly to ensure performance and field durability. In addition, it examines the necessary trade-offs and associated design modifications and evaluates their impact on warranty cost for system failure.
Technical Paper

Cell Design for Ceramic Monoliths for Catalytic Converter Application

1988-10-01
881685
The shape and size of the unit cell of a ceramic monolith have a profound influence on its geometric and mechanical properties. These, in turn, affect the catalytic performance, converter durability and vehicle drive-ability. This paper presents the important relationships between cell geometry and monolith's open frontal area, geometric surface area, hydraulic diameter, bulk density, structural rigidity, strength and heat transfer characteristics of the monolith; both the square and triangular cells are considered. These relationships provide a rational basis for selecting the cell shape and size which will yield the best balance between the various performance requirements, i.e. light-off characteristics, conversion efficiency, back pressure and long-term dutability. It is shown that certain tradeoffs are necessary in selecting the final cell geometry which is best accomplished by prioritizing the various performance requirements.
X