Refine Your Search

Topic

Search Results

Standard

Transparent Area Washing Systems for Aircraft

2006-03-27
HISTORICAL
AIR1102A
This information report presents data and recommendations pertaining to the design and development of transparent area washing systems for aircraft.
Standard

Thermophysical Properties of the Natural Environment, Gases, Liquids, and Solids

2004-06-22
HISTORICAL
AIR1168/9
This AIR is arranged in the following four sections: 2A - Properties of the Natural Environment 2B - Properties of Gases 2C - Properties of Liquids 2D - Properties of Solids A summary of each section is given below. Section 2A - This section includes currently applicable earth atmosphere standards (Refs. 101 and 103) and data on the near-Earth environment. Limited data on Mars and Venus reflected solar and planetary-emitted radiation and on micrometeorite data are also included. For space vehicle applications, environmental models are of two general types: orbital and reentry. For orbital models, variable properties such as time and solar flux are usually averaged. Reentry atmospheres are chiefly a function of location and altitude, and selection may be based on reentry location. Variation with latitude is an important local effect (Ref. 106). The electromagnetic solar radiation data in this section are for altitudes above the Earth’s atmosphere.
Standard

Thermophysical Characteristics of Working Fluids and Heat Transfer Fluids

2017-05-19
CURRENT
AIR1168/10A
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
Standard

The Control of Excess Humidity in Avionics Cooling

2003-10-31
HISTORICAL
ARP987A
The purpose of this document is threefold: (1) to review the problem of moisture in avionics equipment, (2) to outline methods for correcting conditions of excess moisture in existing avionics installations, and (3) to recommend design practices for new avionics cooling system installations which will minimize the adverse effects of moisture.
Standard

THERMOPHYSICAL CHARACTERISTICS OF WORKING FLUIDS AND HEAT TRANSFER FLUIDS

2011-06-21
HISTORICAL
AIR1168/10
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
Standard

TESTING OF PROTOTYPE AIRPLANE AIR CONDITIONING SYSTEMS

1960-03-01
HISTORICAL
ARP217A
These recommendations are written to cover the testing of air conditioning equipment functioning as a complete and installed system in prototype civil aircraft for the purpose of: A Demonstrating the safety of the installation and equipment. B Demonstrating performance of the installation and equipment. a Source of heat b Source of fresh air and/or ventilation c The cooling system d Distribution system including ducting, joints, etc. e Water separator f Exhaust system g Temperature control system. h Cabin pressurisation system including flow and pressure controls. C Obtaining data for future design and to aid in the analysis of in-service performance of the systems and equipment.
Standard

TESTING OF PROTOTYPE AIRPLANE AIR CONDITIONING SYSTEMS

1951-03-15
HISTORICAL
ARP217
These recommendations are written to cover the testing of air conditioning equipment as installed in the prototype aircraft for the purpose of: A Demonstrating safety of the installation. B Demonstrating performance of the installation. a Aircraft ducting and distribution system. b Component parts (i.e., vendors equipment) C Obtaining data for future design.
Standard

TESTING OF COMMERCIAL AIRPLANE ENVIRONMENTAL CONTROL SYSTEMS

1997-10-01
HISTORICAL
ARP217C
These recommendations are written to cover the testing of environmental control equipment, functioning as a complete and installed system in civil aircraft for the purpose of: a Demonstrating the safety of the installation and equipment. b Demonstrating proper functioning of the installation and equipment. c Demonstrating performance of the installation and equipment. d Obtaining data for future design and to aid in the analysis of in-service performance of the system and equipment.
Standard

TESTING OF COMMERCIAL AIRPLANE ENVIRONMENTAL CONTROL SYSTEMS

1973-10-15
HISTORICAL
ARP217B
These recommendations are written to cover the testing of environmental control equipment, functioning as a complete and installed system in civil aircraft for the purpose of: a Demonstrating the safety of the installation and equipment. b Demonstrating proper functioning of the installation and equipment. c Demonstrating performance of the installation and equipment. d Obtaining data for future design and to aid in the analysis of in-service performance of the system and equipment.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRPLANE CABIN

1956-03-15
HISTORICAL
ARP89B
This recommended practice covers automatic cabin temperature control systems of the following types for pressurized and unpressurized cabins: Type I - Proportioning. Type II - On-Off, or Cycling. Type III - Floating, including modifications thereof.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRCRAFT COMPARTMENT

1992-03-01
HISTORICAL
ARP89C
The recommendations of this ARP are primarily intended to be applicable to temperature control of compartments, occupied or unoccupied, of civil aircraft whose prime function is the transporting of passengers or cargo. The recommendations will apply, however, to a much broader category of civil and military aircraft where automatic temperature control systems are applicable.
Standard

Spacecraft Equipment Environmental Control

2006-03-24
HISTORICAL
AIR1168/13
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
Standard

Spacecraft Equipment Environmental Control

2011-07-25
CURRENT
AIR1168/13A
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
X