Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Trapping Performance of Fine Particles from a Diesel Engine by Various DPFs with Different Surface Structures

2004-03-08
2004-01-0598
The regulation of particulate matter (PM) from diesel engines is coming to be very stringent at present. The usage of diesel particulate filter (DPF) is now under consideration in many heavy-duty diesel vehicle manufacturers to reduce PM emission from a diesel engine. The possibility that very fine particles may pass through DPF is suggested. The understanding of fine particles emission behaviors and the countermeasure of reducing particle emissions from DPF will come to be important in near future. The behavior of particle size distribution after DPF has not been studied enough yet. In this study, fine particles generated by a diesel engine are introduced to honeycomb type and SiC (Silicon Carbite) fiber type DPFs and the collection performances of fine particles by various DPFs with different surface structures have been examined.
Technical Paper

Real-Time Measurement of Particle Size Distribution From Diesel Engines Equipped With Continuous Regenerative DPF Under a Transient Driving Condition

2004-06-08
2004-01-1984
A new PM measurement method, such as particle measurement equipments, samplings and so on, is being studied at present for a type approval test in the future. Particles emitted from diesel engines, especially the particles that are called “Nuclei Mode Particles” are very unstable and easily influenced by the engine operating conditions and the measurement conditions. Most of nuclei mode particles are said to consist of volatile organic particles with mainly high carbon numbers. It is said that a continuous regenerative type DPF (Diesel Particulate Filter) consisting of oxidation catalyst and ceramic filter will prevail in the near future. These particles may be able to be reduced by an oxidation catalyst in this DPF.
Technical Paper

Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging

2000-06-19
2000-01-1809
This research investigates engine performance and the possibility of reducing exhaust emissions by using Dimethyl Ether (DME). There are high expectations for DME as a new alternative fuel for diesel engines for heavy-duty vehicles. In this experiment, a single cylinder direct-injection diesel engine with displacement of 1.05 liter and a compression ratio of 18:1 was used as a base engine. Common rail type DME fuel injection equipment for the single cylinder engine experiment was installed, and direct injection in the cylinder of DME was tried. Results indicated that high injection pressure, high swirl ratio, and supercharging using multi-hole injectors are effective for combustion promotion in the DME fueled diesel engine (DME engine). The output of the DME engine using supercharging with an intercooler and EGR was higher than that of a diesel engine. By increasing the EGR rate Nox emission was reduced to about 1/3 that of the diesel engine. Smoke was not completely emitted.
Journal Article

Optimization of PM Measurements with a Number Counting Method

2008-10-06
2008-01-2436
Repeatabilities of PM measurements on a heavy-duty diesel engine equipped with a diesel particulate filter (DPF) using a filter weighing method and a number counting method with a full flow dilution system and a partial flow system were evaluated. The filter method with partial flow exhibited the best repeatability. However, a good correlation between the full flow and the partial flow number counting results suggests that the fluctuations observed using the number counting method were caused by changes in the engine exhaust. Applying a strict preconditioning procedure should improve the repeatability of the number counting method because this method is more sensitive than the filter weighing method. In addition, the effects of the specifications for the number counting method were evaluated. The results indicate that the hose length from the tip of the sampling probe to the inlet of the number counting system had a negligible effect.
Technical Paper

Measurement of the Diesel Exhaust Particle Reduction Effect and Particle Size Distribution in a Transient Cycle Mode with an Installed Diesel Particulate Filter (DPF)

2002-03-04
2002-01-1005
Exhaust emissions and particulate matter (PM) from an engine with a conventional continuous regeneration diesel particulate filter (DPF) were measured to evaluate DPF performance under the Japan 13-mode cycle, European Stationary Cycle and various transient cycles: U.S. transient cycle, Japan Automobile Research Institute cycle, and World-wide Heavy Duty Cycle. The emission tendencies with and without DPF under these conditions were clarified. According to these experiments, accumulated PM in the DPF under the driving modes mentioned above has influence on measurement errors. It is necessary to estimate the amount of accumulated PM in the DPF to evaluate the PM reduction rate correctly. This study also measured particle size distribution of diesel exhaust particulates (DEP) downstream of the DPF using an electrical low-pressure impactor (ELPI). As a result, we determined that most of the particles not trapped by the DPF are less than 110nm.
Technical Paper

Emission Characteristics of a Urea SCR System under the NOx Level of Japanese 2009 Emission Regulation

2007-10-29
2007-01-3996
In order to discuss future technical issues for urea SCR (selective catalytic reduction) system, it is necessary to assess various technical possibilities that would be applied to urea SCR systems which is capable of complying with future emission level requirements, for example Japanese 2009 emission regulation. In this paper, three measures (enhanced insulation on a DOC (diesel oxidation catalyst), aggressive urea solution injection and idling stop) are installed on a urea SCR system of a commercial engine system in order to achieve further NOx (nitrogen oxide) reductions. With combination of these three measures, NOx is drastically reduced to the levels lower than 0.7 g/kWh, which is a NOx limit value of the Japanese 2009 emission regulation. NH3 (ammonia) and HCN (hydro cyanide) are also measured as unregulated harmful components.
Technical Paper

Effective Usage of LNT in High Boosted and High EGR Rate of Heavy Duty Diesel Engine

2010-04-12
2010-01-1066
Lean NOx trap (LNT) and Urea-SCR system are effective aftertreatment systems as NOx reduction device in diesel engines. On the other hand, DPF has already been developed as PM reduction device and it has been used in various vehicles. LNT can absorb and reduce NOx emission in wide range exhaust temperatures, from 150°C to 400°C, and the size of LNT component can be compact in comparison with Urea-SCR system because LNT uses the diesel fuel as a reducing agent and it is needless to install the reducing agent tank in the vehicle. In this study, authors have shown that the NOx conversion rate of LNT is high in the case of extremely low NOx concentration from the engine. Also, the effects of LNT and DPF were examined using the Super Clean Diesel (SCD) Engine, which has low NOx level before aftertreatment and has been finished as Japanese national project.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Effective BSFC and NOx Reduction on Super Clean Diesel of Heavy Duty Diesel Engine by High Boosting and High EGR Rate

2011-04-12
2011-01-0369
Reduction of exhaust emissions and BSFC was studied for high pressure, wide range, and high EGR rates in a Super-clean Diesel six-cylinder heavy duty engine. The GVW 25-ton vehicle has 10.52 L engine displacement, with maximum power of 300 kW and maximum torque of 1842 Nm. The engine is equipped with high-pressure fuel injection of a 200 MPa level common-rail system. A variable geometry turbocharger (VGT) was newly designed. The maximum pressure ratio of the compressor is about twice that of the previous design: 2.5. Additionally, wide range and a high EGR rate are achieved by high pressure-loop EGR (HP-EGR) and low pressure-loop EGR (LP-EGR) with described VGT and high-pressure fuel injection. The HP-EGR can reduce NOx concentrations in the exhaust pipe, but the high EGR rate worsens smoke. The HP-EGR system layout has an important shortcoming: it has great differences of the intake EGR gas amount into each cylinder, worsens smoke.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine

2008-10-06
2008-01-2384
The use of biodiesel fuels as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO2 emission, because biodiesel is produced from renewable biomass resources. Biodiesel is usually blended to conventional diesel fuel in various proportions. It is possible that this biodiesel blending causes the problems on emission characteristics of modern diesel engine, because it could be confirmed that the application of neat biodiesel to modern diesel engines whose control parameters were optimized for conventional diesel fuel deteriorated the emission performances. It is necessary to clarify the effect of biodiesel blending on exhaust emissions of modern diesel engine. Rapeseed oil methyl ester (RME) was selected as a biodiesel used in this study.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
X