Refine Your Search

Topic

Search Results

Standard

Terminus, Fiber Optic, Harsh Environment, General Specification

2021-11-23
CURRENT
AS8438
This document provides details of test methods that should be taken into consideration when qualifying fiber optic termini to the product specifications (slash sheets). The product specifications (slash sheets) provide pass/fail criteria, optical and physical intermatability, and interoperability requirements for fiber optic termini in circular, rectangular, and modular type aerospace connectors.
Standard

Multi-Transmitter Bidirectional Fiber-Optic Data Bus for Distributed Aircraft Control Systems

2011-03-22
CURRENT
AS5370A
This specification applies to a communication protocol for networked control systems. The protocol provides peer-to-peer communication for networked control and is suitable for implementing both peer-to-peer and master-slave control strategies. This specification describes services for all seven protocol layers. In the layer 7 specification, it includes a description of the types of messages used by applications to exchange application and network management data.
Standard

Multi-Transmitter Bidirectional Fiber-Optic Data Bus for Distributed Aircraft Control Systems

2002-04-26
HISTORICAL
AS5370
This specification applies to a communication protocol for networked control systems. The protocol provides peer-to-peer communication for networked control and is suitable for implementing both peer-to-peer and master-slave control strategies. This specification describes services for all seven protocol layers. In the layer 7 specification, it includes a description of the types of messages used by applications to exchange application and network management data.
Standard

In-Service Fiber Optic Inspection, Evaluation, and Cleaning, Best Practices, Expanded Beam Termini

2020-03-18
CURRENT
ARP6283/1
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of expanded beam (EB) fiber optic interconnect components (termini, alignment sleeves, and connectors), test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with EB fiber optic termini.
Standard

In-Service Fiber Optic Inspection, Evaluation and Cleaning, Best Practices, Physical Contact Termini

2018-01-04
CURRENT
ARP6283
This document provides recommended best practice methods and processes for the in-service inspection, evaluation and cleaning of all physical contact (PC) fiber optic interconnect components (termini, alignment sleeves and connectors), test equipment and test leads for maintainers qualified to the approved aerospace fiber optic training courses developed in accordance with ARP5602 or ARINC807. This document also provides a decision-making disposition flowchart to determine whether the fiber optic components are acceptable for operation. For definitions of individual component parts refer to ARP5061.
Standard

Guidelines for Design of Digital Fiber Optic Link Loss Budget Methodology

2018-01-23
CURRENT
AIR6113
This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is specifically intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies. The proper application of various calculation methods is provided to determine link loss power budget(s), that depend on differing requirements on aerospace programs.
Standard

Fusion Splice for Aerospace Fiber Optic Cables

2021-07-23
CURRENT
AS6506/1
This specification includes detailed requirements for a fiber optic cable splice compliant with AS6506. Every requirement of the parent standard, AS6506, which applies to this detail specification is identified below by the word “applicable.” In any case in which a requirement of this specification varies from that of the parent standard, the alternate requirement is described. If a parent standard requirement does not apply, the words used are “not applicable.”
Standard

Fiber Optic Harsh Environment Test Methods Cross Reference Document

2021-06-10
CURRENT
AIR6282A
This report provides cross reference matrices detailing current test methods used in the qualification processes of fiber optic connectors, termini and cables for aerospace, telecommunications, and naval applications. The cross-reference allows the end user to select the test methods most suitable for qualifying a component, or to identify alternative test methods where a specific test is not defined in a referenced document. The report also provides information on what area each type of referenced document has been developed for.
Standard

Fiber Optic Harsh Environment Test Methods Cross Reference Document

2015-06-12
HISTORICAL
AIR6282
This standard provides a cross reference detailing current test methods used in the qualification processes of fiber optic connectors, termini and cables for aerospace, telecommunications and naval applications. The cross-reference allows the end user to select the test methods most suitable for qualifying a component, or to identify alternative test methods where a specific test is not defined in a referenced document. The standard also provides information on what area each type of referenced document has been developed for.
Standard

Fiber Optic Cleaning

2018-01-23
CURRENT
AIR6031
This document is intended for connectors typically found on aerospace platforms and ground support equipment. The document provides the reasons for proper fiber optic cleaning, an in-depth discussion of available cleaning methods, materials, packaging, safety, and environmental concerns. Applicable personnel include: Managers Designers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Personnel Purchasing Shipping/Receiving Production
Standard

Digital Fiber Optic Link Loss Budget Methodology for Aerospace Platforms

2007-11-20
HISTORICAL
AS5603
This SAE Technical Report is an Aerospace Standard, compliant with the Organization and Operating Guide for the Aerospace Council of the SAE Technical Standards Board. It is consistent with the category (5) definition of an Aerospace Standard under Section 6.0, Technical Reports, in Paragraph 6.1.2. This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is, specifically, intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies.
X