Refine Your Search

Topic

Search Results

Standard

Vehicle Lift Points for Service Garage Lifting

2019-10-16
CURRENT
J2184_201910
This SAE Standard is directed at the proper communication of the lift points on the vehicle frame or underbody to commercial service personnel for the purpose of raising passenger vehicles, light trucks, and vans completely off the shop floor. To this end, vehicle manufacturers are guided in the proper design of a lift point label and lift points located on the body/frame for use by service garages.
Standard

Vehicle Lift Points for Service Garage Lifting

2007-09-27
HISTORICAL
J2184_200709
This SAE Standard is directed at the proper communication of the lift points on the vehicle frame or underbody to commercial service personnel for the purpose of raising passenger vehicles, light trucks, and vans completely off the shop floor. To this end, vehicle manufacturers are guided in the proper design of a lift point label and lift points located on the body/frame for use by service garages.
Standard

Vehicle Hood Latch Systems

1982-07-01
HISTORICAL
J362_198207
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The following optional tests are described. a Vehicle Performance Tests—On-the-road evaluation under an established pattern of vehicle driving situations. b Laboratory Dynamic Tests—Dynamic simulation in the laboratory of the loads and forces which the latch system encounters on the road. c Laboratory Static Tests—Simplified test procedures intended to permit static simulation of the loads which road tests have indicated the latch system may encounter. The test procedures outlined in this recommended practice are based on current engineering test methods.
Standard

VEHICLE HOOD LATCH SYSTEMS

1969-01-01
HISTORICAL
J362_196901
This SAE Recommended Practice establishes uniform test procedures for evaluating vehicle hood latch systems. It specifically pertains to those latch systems on hoods, which when the hood is fully opened (assuming the absence of hood stops) extend at any point above a horizontal plane through the uppermost edge of the steering wheel in the straight ahead driving position with the vehicle in a horizontal position. The following optional tests are described. (a) Vehicle Performance Tests—On-the-road evaluation under an established pattern of vehicle driving situations. (b) Laboratory Dynamic Tests—Dynamic simulation in the laboratory of the loads and forces which the latch system encounters on the road. (c) Laboratory Static Tests—Simplified test procedures intended to permit static simulation of the loads which road tests have indicated the latch system may encounter. The test procedures outlined in this recommended practice are based on current engineering test methods.
Standard

Towing Equipment Ratings and Practices

1999-08-01
HISTORICAL
J2512_199908
This SAE Recommended Practice applies to all trucks that are equipped with armlift bodies, carrier bodies, wheel lift bodies, wrecker, and underlift bodies. Additional rating methods are provided for tow slings, truck hitches, and chain assemblies.
Standard

Towing Equipment Ratings and Practices

2019-10-24
CURRENT
J2512_201910
This SAE Recommended Practice applies to all trucks that are equipped with armlift bodies, carrier bodies, wheel lift bodies, wrecker, and underlift bodies. Additional rating methods are provided for tow slings, truck hitches, and chain assemblies.
Standard

The Effects of Front-mounted Accessories on Air Bag Sensors and Crashworthiness

1997-10-01
HISTORICAL
J2431_199710
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

The Effects of Front-Mounted Accessories on Air Bag Sensors and Crashworthiness

2019-10-09
CURRENT
J2431_201910
Almost all light trucks now are being manufactured with at least a driver side air bag and all will have dual air bags by 1998. The driving forces behind this feature are occupant safety, federal regulations, and competition in the industry. Along with the booming popularity of pickups and SUVs, they are commonly accessorized with a wide variety of products. Many accessories for four-wheel drives in particular are mounted on the front of the vehicle. These products include grille/brush guards, winches, snow plows, replacement bumpers, bicycle carriers, etc. Concerns have arisen over the compatibility of these accessories with the vehicle’s air bag system. The vehicle manufacturers are concerned because of their huge investment in design and crash test verification of the complete vehicle system and keen awareness of the federal regulations. The crushability of the front bumper and supporting structure are key elements in the system, so alterations to that area become logical concerns.
Standard

Seat Belt Hardware Performance Requirements

2013-02-13
HISTORICAL
J141_201302
This SAE Recommended Practice describes performance requirements for hardware used in motor vehicle seat belt assemblies when tested in accordance with the test procedures specified in SAE J140. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

STRSW (Squeeze Type Resistance Spot Welding) Equipment Acceptance Criteria for the Collision Repair Industry

2019-10-28
CURRENT
J2667_201910
This SAE Recommended Practice provides a minimum standard for evaluating squeeze-type resistance spot welding (STRSW) equipment and minimum weld performance criteria for two-sided automotive collision repair welding. This document contains several standardized test methods that are designed for evaluating equipment performance in a laboratory environment.
Standard

STRSW (Squeeze Type Resistance Spot Welding) Equipment Acceptance Criteria for the Collision Repair Industry

2004-10-26
HISTORICAL
J2667_200410
This SAE Recommended Practice provides a minimum standard for evaluating squeeze-type resistance spot welding (STRSW) equipment and minimum weld performance criteria for two-sided automotive collision repair welding. This document contains several standardized test methods that are designed for evaluating equipment performance in a laboratory environment.
Standard

Recommended Practice for Optimizing Automobile Damageability and Repairability

2016-02-03
HISTORICAL
J1555_201602
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
Standard

Recommended Practice for Optimizing Automobile Damageability and Repairability

2019-10-24
CURRENT
J1555_201910
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
X