Refine Your Search

Topic

Search Results

Technical Paper

Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process

2020-03-10
2020-01-5013
Development processes for modern combustion engines already make substantial use of more or less sophisticated simulation approaches. The enhancement of computational resources additionally allows the increasing use of simulation tools in terms of time-consuming three-dimensional CFD approaches. In particular, the preliminary estimation of feasible operating ranges and strategies requires a vast multitude of single simulations. Here, multi-zone simulation approaches incorporate the advantages of comparably short simulation durations. Nevertheless, the combination with more detailed sub-models allows these rather simple modeling approaches to offer considerable insight into relevant engine operation phenomena. In the context of combustion process development, this paper describes a phenomenological model approach for the prediction of operating point characteristics of a dual-fuel pilot injection combustion process.
Technical Paper

Real-Time Measurement of the Piston Ring Gap Positions and Their Effect on Exhaust Engine Oil Emission

2018-05-05
2018-01-5006
Measurement techniques for piston ring rotation, engine oil emission and blow by have been implemented on a single-cylinder petrol engine. A novel method of analysis allows continuous and fast real-time identification of the piston ring rotation of the two compression rings, while the mass-spectrometric analysis of the exhaust gas delivers the cylinder oil emission instantly and with a high temporal resolution. Only minor modifications to the piston rings were made for the insertion of the γ-emitters, the rings rotate freely around the circumference of the piston. The idea of this setup is that through online observation at the test bench, instant feedback of the measured variables is available, making it possible to purposefully select and compare measurement points. The high time resolution of the measurement methods enables the analysis of dynamic effects. In this article, the measurement setup and evaluation method is described.
Journal Article

Potential Analysis of a DMC/MeFo Mixture in a DISI Single and Multi-Cylinder Light Vehicle Gasoline Engine

2021-04-06
2021-01-0561
In this study a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo) was used as a synthetic gasoline replacement. These synthetic fuels offer CO2-neutral mobility if the fuels are produced in a closed CO2-cycle and they reduce harmful emissions like particulates and NOX. For base potential investigations, a single-cylinder research engine (SCE) was used. An in-depth analysis of real driving cycles in a series 4-cylinder engine (4CE) confirmed the high potential for emission reduction as well as efficiency benefits. Beside the benefit of lower exhaust emissions, especially NOX and particle number (PN) emissions, some additional potential was observed in the SCE. During a start of injection (SOI) variation it could be detected that a late SOI of DMC/MeFo has less influence on combustion stability and ignitability. With this widened range for the SOI the engine application can be improved for example by catalyst heating or stratified mode.
Technical Paper

Piston Design Optimization for a Two-Cylinder Lean-Burn Natural Gas Engine - 3D-CFD-Simulation and Test Bed Measurements

2014-04-01
2014-01-1326
The development of today's drivetrains focusses on the reduction of vehicles' CO2-emissions. Therefore, a drivetrain for urban and commuter traffic is under development at the Institute of Internal Combustion Engines. The concept is based on a lean-burn air cooled two-cylinder natural gas engine, which is combined with a hydraulic hybrid system. On the one hand, lean-burn combustion leads to low nitrogen oxides emissions and high thermal efficiency. On the other hand, there are several challenges concerning inflammability, combustion stability and combustion duration. An approach to optimize the combustion process is the design of the piston bowl. The paper presents the engine concept at first. Afterwards, a description of design parameters for pistons of natural gas engines and a technical overview of piston bowls is given. Subsequent to the analysis of the different piston bowls, a new design approach is presented.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

Numerical Simulation of the Gas Flow through the Piston Ring Pack of an Internal Combustion Engine

2015-04-14
2015-01-1302
Developing piston assemblies for internal combustion engines faces the conflicting priorities of blow-by, friction, oil consumption and wear. Solving this conflict consists in finding a minimum for all these parameters. This optimization can only be successful if all the effects involved are understood properly. In this paper only blow-by and its associated flow paths for a diesel engine in part load operating mode are part of a detailed numerical investigation. A comparison of the possibilities to do a CFD analysis of this problem should show why the way of modeling described here has been picked. Further, the determination of the complex geometry, which results in a challenging set of calculations, is described. Besides the constraints for temperature and pressure, a meshing method for the creation of a dynamic mesh that is capable of describing the movement of all three rings of the piston ring pack simultaneously is also explained.
Technical Paper

Methodology for Piston Ring Oil Accumulation and Oil Film Separation

2022-03-30
2022-01-5023
Investigating the oil transport mechanisms of a combustion engine is essential to decrease engine losses and optimize overall performance. As explained in [1] the amount of oil at predefined positions can be investigated by mixing the engine oil with a specific dye. Therefore, the technology of laser-induced fluorescence (LIF) is used. Fiber optics are assembled flush to the cylinder wall and give the possibility of inducing the dye locally by means of a laser. The emitted light intensity correlates with the amount of oil between the cylinder wall and piston ring. The oil film thickness of the piston ring running surface can therefore be determined for each crank angle (CA). However, the emission signal measured does not always correlate to the complete barrel shape of the piston ring.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Journal Article

Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications

2015-04-14
2015-01-0866
Scarce resources of fossil fuels and increasingly stringent exhaust emission legislation push towards a stronger focus to alternative fuels. Natural gas is considered a promising solution for small engines and passenger cars due to its high availability and low carbon dioxide emissions. Furthermore, natural gas indicates great potential of increased engine efficiency at lean-burn operation. However, the ignition of these lean air/fuel mixtures leads to new challenges, which can be met by fuel scavenged prechambers. At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen an air cooled natural gas engine with a single cylinder displacement volume of 0.5 L is equipped with a methane scavenged prechamber for investigations of the combustion process under real engine conditions. The main combustion chamber is supplied with a lean premixed air/fuel mixture.
Technical Paper

Investigation and Comparison of the Prediction Capabilities of Multiple 0D/1D Combustion Calibration Strategies Using different Turbocharger Systems as Calibration Basis

2022-03-29
2022-01-0378
Reliably calibrated simulation and combustion models not only enable the prediction of non-validated operating points, but also compensate for the time that would be required for costly test bench measurements. Under the premise of investigating various turbocharging concepts for a combustion engine without the need for recalibration, the present work will discuss the influence of two different exhaust gas turbocharger systems on model calibration. Replacing turbochargers is a practical way to test the predictive performance of simulations, since they can drastically affect and change the thermodynamic boundary conditions for comparable operating points. On the one hand, the choice of the appropriate calibration strategy and, on the other hand, the interchangeability of the respective calibration will be discussed.
Technical Paper

Injection Process of the Synthetic Fuel Oxymethylene Ether: Optical Analysis in a Heavy-Duty Engine

2020-09-15
2020-01-2144
Oxygenated synthetic fuels such as oxymethylene ether (OME) are a promising approach to reduce the emissions of diesel engines and to improve sustainability of mobility. The soot-free combustion of OME allows an optimization of the combustion process to minimize remaining pollutants. Considering the injection system, one strategy is to decrease the rail pressure, which has a positive impact on the reduction of nitrogen oxides without increasing the particle formation. Furthermore, due to the reduced lower heating value of OME compared to diesel fuel, an adaptation of the injector nozzle is recommended. This work describes a method for analyzing the injection process for OME, using the Mie scattering effect in an optically accessible heavy-duty diesel engine. The design of the 1.75 l single cylinder engine allows operation up to 300 bar peak cylinder pressure, providing optical access through the piston bowl and through a second window lateral below the cylinder head.
Journal Article

Heat Release Calculation of Internal Combustion Engines by Analyzing the Flame Radiation with Crankshaft Angle Resolution

2017-03-28
2017-01-0787
Improving efficiency and reducing emissions are the principal challenges in developing new generations of internal combustion engines. Different strategies such as downsizing or sophisticated after-treatment of exhaust gases are pursued. Another approach aims at optimizing the parameterization of the engine. Correct adjustments of ignition timings, waste gate position and other factors have significant influence on the combustion process. A multitude of application data is generated during the development process to predefine appropriate settings for most situations. Improvements in regards to the application effort and the quality of the settings can be achieved by measuring the combustion process and optimizing the parametrization in a closed loop. However, cylinder pressure sensors that are used during the development process are too expensive for series applications.
Technical Paper

Fuel Dosing on a Diesel Oxidation Catalyst for After-Treatment System Heating on a Heavy-Duty Engine Powered by Polyoxymethylene Dimethyl Ethers

2020-09-15
2020-01-2157
Polyoxymethylene dimethyl ethers (OME) are synthetic fuels, which offer the property of sustainability because the reactants of production base on hydrogen and carbon dioxide on the one hand, and the air pollution control in consequence of a soot-free combustion in a diesel engine on the other hand. High exhaust gas recirculation (EGR) rates are a promising measure for nitrogen oxide (NOx) reduction without increasing particle emissions because of the resolved soot-NOx trade-off. However, EGR rates towards stoichiometric combustion in OME operation reveals other trade-offs such as methane and formaldehyde emissions. To avoid these, a lean mixture with a combination of EGR and exhaust after-treatment with selective catalytic reduction (SCR) is useful. The limitation of urea dosing due to the light-off temperature of SCR systems requires heating measures.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

Experimental and Simulative Approaches for the Determination of Discharge Coefficients for Inlet and Exhaust Valves and Ports in Internal Combustion Engines

2017-11-27
2017-01-5022
In order to fulfill future exhaust emission regulations, the variety of subsystems of internal combustion engines is progressively investigated and optimized in detail. The present article mainly focuses on studies of the flow field and the resulting discharge coefficients of the intake and exhaust valves and ports. In particular, the valves and ports influence the required work for the gas exchange process, as well as the cylinder charge and consequently highly impact the engine’s performance. For the evaluation of discharge coefficients of a modern combustion engine, a stationary flow test bench has been set up at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM). The setup is connected to the test bench’s charge air system, allowing the adjustment and control of the system pressure, as well as the pressure difference across the particular gas exchange valve.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Journal Article

Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System

2016-11-16
2016-01-9046
In the present work the benefit of a 50 MPa gasoline direct injection system (GDI) in terms of particle number (PN) emissions as well as fuel consumption is shown on a 0.5 l single cylinder research engine in different engine operating conditions. The investigations show a strong effect of injection timing on combustion duration. As fast combustion can be helpful to reduce fuel consumption, this effect should be investigated more in detail. Subsequent analysis with the method of particle image velocimetry (PIV) at the optical configuration of this engine and three dimensional (3D) computational fluid dynamics (CFD) calculations reveal the influence of injection timing on large scale charge motion (tumble) and the level of turbulent kinetic energy. Especially with delayed injection timing, high combustion velocities can be achieved. At current series injection pressures, the particle number emissions increase at late injection timing.
Journal Article

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-04-16
2012-01-1078
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH₃ precursor to ammonia gas has been designed, applied and tested in a 3-liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea. Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue® .
Technical Paper

Development of Dynamic Models for an HCCI Engine with Fully Variable Valve-Train

2013-04-08
2013-01-1656
For the next stage of Homogeneous Charge Compression Ignition (HCCI) engine researches, the development of an engine controller, taking account of dynamics is required. The objective of this paper is to develop dynamic multi input and multi output HCCI engine models and a controller to deal with variable valve lift, variable valve phase, and fuel injection. First, a physical continuous model has been developed. This model mainly consists of air flow models, an ignition model, and a combustion and mechanical model of the engine. The flow models use a receiver model on volumetric elements such as an intake manifold and a valve flow model on throttling elements such as intake valves. Livengood-wu integration of Arrhenius function is used to predict ignition timing. The combustion duration is expressed as a function of ignition timings.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
X