Refine Your Search

null

Search Results

Viewing 1 to 15 of 15
Technical Paper

The Potential of Variable Compressor Geometry for Highly Boosted Gasoline Engines

2011-04-12
2011-01-0376
The supercharging of small-displacement gasoline engines requires high pressure ratios combined with a wide range of air flow rate. To resolve this conflict, two-stage turbo charging with two turbochargers or the combination of a turbocharger and a mechanical compressor is used. But this is associated with an increase in complexity. The highest potential for avoiding a multi-stage system is provided by the systematic modification of the turbo-machinery operating maps, e.g. on the turbine side by using variable turbine geometry. An additional promising approach is the implementation on the compressor side of a variable guide vane. The shape of the compressor map is directly affected and the requirements for highly boosted engines can thus be fulfilled. The present paper provides an assessment of the potential of a variable compressor in combination with a variable geometry turbine (VTG) and additional wastegate on a small-volume gasoline engine.
Technical Paper

Pre-investigations on Reactive Exhaust Gas Recirculation for a Naturally Aspirated Cogeneration Gas Engine

2023-06-26
2023-01-1212
Given its ability to be combined with the three-way catalyst, the stoichiometric operation is significantly more attractive than the lean-burn process, when considering the increasingly severe NOx limit for cogeneration gas engines in Germany. However, the high temperature of the stoichiometric combustion results in increased wall heat losses, restricted combustion phasings (owing to knock tendency) and thus efficiency penalties. To lower the temperature of the stoichiometric combustion and thus improve the engine efficiency, exhaust gas recirculation (EGR) is one of the most effective means. Nevertheless, the dilution with EGR has much lower tolerance level than with excess air, which leads to a consequent drop in the thermal efficiency. In this regard, reducing the water vapor concentration in the recirculated exhaust gas and increasing the EGR reactivity are two potential measures that may extend the mixture dilution limit and result in engine efficiency benefits.
Technical Paper

Potentials of Miller Cycle on HD Diesel Engines Using a 2-Stage Turbocharging System

2018-04-03
2018-01-0383
Variable valve trains offer the opportunity to apply advanced combustion process strategies such as the Miller cycle. As is well known, applying Miller timing for CI engines is an effective way to reduce NOX emissions and can lead to an increase in engine efficiency. Because of the intended future NOX and GHG limits for on-road HD CI engines, the use of variable valve trains become more and more inevitable. Previous studies of the authors have shown that the improvement potential highly depends on the achievable cylinder charge level. Increasing this (through additional increase in boost pressure) results in a significant decrease in ISFC as well as in an improved NOX-PM trade-off. However, in these considerations the pressure difference of the charge air and the exhaust back pressure was kept on the same level. The present paper investigates the improvement potentials for heavy duty CI engines taking a two-stage turbocharging group into account.
Technical Paper

Potentials of Air Path Variabilities and Water Injection in HD Gas Engines

2023-08-28
2023-24-0120
The transportation sector, and commercial vehicles in particular, play an important role in global CO2 emissions. For this reason, the EU recently decided to reduce CO2 emissions from commercial vehicles by 30% until 2030. One alternative to conventional diesel propulsion is the usage of stoichiometric natural gas combustion. Due to the lowered C/H ratio and the cost effective exhaust after treatment (EAT) in form of a three way catalyst (TWC), less CO2 is emitted and it is possible to comply even with most stringent NOX legislations. However, the stoichiometric combustion of natural gas has also disadvantages. In particular, the throttling and retarded 50 % mass fuel burned (MFB50) positions due to knocking lead to efficiency losses. One way to minimize these is the usage of exhaust gas re-circulation (EGR), Miller cycle and water injection. The reduced knocking tendency allows the geometric compression ratio to be increased further, which leads to an additional efficiency advantage.
Technical Paper

Optical Investigations of Fuel-Mixture Generation at Cold Start Conditions of SI-Engines in Consideration of Heat Loading

2011-01-19
2011-26-0079
The paper presents laser optical investigations of mixture formation at negative pressure conditions, typical for throttle-controlled SI engines. A high pressure injector as well as a low pressure injector is used to estimate the behavior of different fuels (premium gasoline and ethanol) at different negative ambient pressures. The objective is to show the potential of combining the better evaporation due to less ambient pressure with a heat loading effect due to variable inlet timing especially for the use of ethanol.
Technical Paper

Optical Investigation of Mixture Formation in a Small Bore DISI Engine by Laser Induced Exciplex Fluorescence (LIEF)

2019-09-09
2019-24-0133
Legislative and customer demands in terms of fuel consumption and emissions are an enormous challenge for the development of modern combustion engines. Downsizing in combination with turbocharging and direct injection is one way to increase efficiency and therefore meet the requirements. This results in a reduction of the displacement and thus the bore diameter. The emerging trends towards long-stroke engine design and hybridization make the use of small bore diameters in future gasoline engines a realistic scenario. The application of direct injection with small cylinder dimensions increases the probability of the interaction of liquid fuel with the cylinder walls, which may result in disadvantages concerning especially particulate emissions. This leads to the question which bore diameter is feasible without drawbacks concerning emissions as a result of wall wetting.
Technical Paper

Investigations Regarding Deposit Formation on Diesel Oxidation Catalysts

2020-04-14
2020-01-1432
Catalyst fouling by deposit formation on components in the exhaust aftertreatment system is critical since RDE limits must be obtained at any time. Besides, uncontrolled oxidation of carbonaceous deposits might damage the affected exhaust aftertreatment component. To comply with current and future emission standards, diesel engines are usually operated with high EGR rates leading to increased soot and hydrocarbon emissions, which increases the likeliness of the formation of carbonaceous deposits on EAT components. With this background, a research project investigating the influencing parameters and mechanisms of deposit formation on DOCs was carried out. In a follow-up project, the results will be used in order to compare different deposit removal strategies. Within the scope of the presented project, a reference driving cycle was developed in order to create deposits within a short time.
Technical Paper

Increasing Engine Efficiency with Hydrogen Assisted Lean Burn Operation on a Small Bore, Long Stroke DISI Engine

2023-04-11
2023-01-0246
Internal combustion engines fall under increased environmental and social pressure. However, they will still play an important role in future transport, especially in hybrid propulsion systems. As a consequence, efficiency of SI engines has to be further increased. Lean burn operation provides a promising way to reach this target. An extremely downsized SI single cylinder research engine is used for the investigations. The engine features a stroke-to-bore ratio of 1.5, leading to higher piston speeds and hence increased tumble motion. The resulting increase in turbulent flame speed supports sufficient combustion performance of diluted mixtures. Although the mentioned provisions increase combustion stability for lean burn operation the reachable relative air/fuel ratio is limited. In order to extend the lean burn capabilities of the engine (λ ≥ 2.0) and further exploit the efficiency advantages of this combustion process the engine is upgraded with a hydrogen port fuel injection.
Technical Paper

Exploiting SI Engine Efficiency Through Lean Burn Operation in Combination with Stroke Extension, Miller Timings and High Compression Ratios

2021-09-05
2021-24-0034
Individual transport plays a considerable role in global greenhouse gas emissions. Hence, worldwide legislation increases the demands on the automotive industry with regard to emissions. Because internal combustion engines will likely play an important role in the future transport, particularly in hybrid propulsion systems, further improvement of the combustion system is necessary. Therefore, the potential of lean burn combustion in combination with other technologies is investigated. The primary focus is on the improvement of SI engine efficiency. For the investigations conducted, an extremely downsized SI single cylinder research engine is upgraded with various engine technologies. The stroke-to-bore ratio is increased to 1.5, leading to higher piston speeds. The resulting increase in tumble and hence turbulent flame speed supports the combustion performance of highly diluted mixtures.
Technical Paper

Experimental Investigation of Variable Geometry Compressor for Highly Boosted Gasoline Engines

2015-04-14
2015-01-1289
A key technology for further improving the efficiency of gasoline engines lies in downsizing in combination with turbocharging. Decreasing the engine displacement greatly increases the demands on the turbocharging system. The charging of the engine with a single-stage turbocharger leads to a compromise to fulfill the requirements of the nominal power of the engine and the low-end torque. To avoid the use of complex two-stage boosting systems, it is necessary to increase the pressure ratio and the air flow rate at the same time. The wide speed and airflow range of gasoline engines intensify this trade-off. The use of a variable geometry turbine (VGT), additionally equipped with a wastegate bypass, offers great potential to meet the requirements on the turbine side. The range of stable operation of the compressor is limited by choke at high mass flow rates and surge at low mass flow rates. The variable geometry compressor (VGC) is one promising approach to extend the compressor map.
Technical Paper

Conceptual Design of Small Direct-Injection Spark-Ignition Engine Concepts with Various Injector Positions by Use of CAE-Tools

2012-10-23
2012-32-0066
Within a project of a research association (Forschungsver-einigung Verbrennungskraftmaschinen e.V.) a DI spark-ignition engine with small engine displacement was designed at the Institute of Internal Combustion Engines of the Technische Universitat Braunschweig. The objective of the project is to investigate the minimum bore diameter which allows the reasonable use of the advantages of gasoline direct injection. This article outlines the preliminary studies to identify suitable geometry variants for lateral and central injector position concerning effective engine operating data. Under consideration of current production possibilities and geometries of available injector and spark plug CAD studies were carried out. All suitable valve concepts, beginning with a two-valve (2V) concept and up to a four-valve (4V) concept, were examined in the CAD studies. The bore diameter was varied in a range from 56 to 62 mm combined with a variation of the stroke/bore ratio from 0.9 to 1.2.
Journal Article

Comparison of Fuel Consumption and Emissions of Automotive and Large-Bore Diesel Engines

2014-04-01
2014-01-1100
When comparing automotive and large-bore diesel engines, the latter usually show lower specific fuel consumption values, while automotive engines are subject to much stricter emission standards. Within an FVV (Research Association for Combustion Engines) project these differences were identified, quantified and assigned to individual design and operation parameters. The approach was split in three different phases: 1 Comparison of different-sized diesel engines 2 Correlation of differences in fuel consumption to design and operating parameters 3 Further investigations under automotive boundary conditions The comparison in the first phase was made on the basis of operating data and energy balances as well as the separation of losses based on the thermodynamic analysis. To also determine the quantitative effects of each design and operating parameter, a 1D process calculation model of the passenger car engine was transformed gradually to a large-bore engine in the second phase.
Journal Article

Axial Turbine Turbocharger for Charging a Lean-Burn Gasoline Engine

2022-03-29
2022-01-0377
A single-stage turbocharger turbine is developed with the objective of enabling a gasoline spark-ignition engine to operate under lean-burn conditions with an air-to-fuel ratio of λ=2 in the range of the Worldwide Harmonized Light-Duty Vehicles Test Cycle. For this purpose, extensive 1-D engine simulations are performed using a combination of a simple compressor and simple turbine model as well as a combination of the stock compressor and a simple turbine model. The results show that an isentropic turbine efficiency of more than 70% over a wide operating range is required for the desired engine operation - especially with regard to the low-end-torque. Based on the crank-angle-resolved engine simulation data, turbine requirements are determined. Their evaluation shows that an axial turbine is a reasonable alternative to conventional radial turbines for this application. Next, a preliminary axial turbine is designed using 1-D/2-D design approaches.
Journal Article

Advanced EGR Control Concept for HD-Truck-Engines

2008-04-14
2008-01-1200
Exhaust Gas Recirculation (EGR) is a proven method for in-cylinder NOx reduction. A multitude of scientific work has focused on the temperature-lowering effect of exhaust gases. The disadvantage of a turbocharged heavy duty diesel truck engine is a high positive pressure gradient between intake and exhaust which complicates a High Pressure Exhaust Gas Recirculation (HP-EGR). In this study, a new technology will be presented to introduce EGR in the high pressure loop of a turbocharged HD-Truck engine without penalty of fuel economy caused by the increase of pumping losses.
Journal Article

Active Air Management with High Speed Flap for DI-Diesel-Engines

2008-04-14
2008-01-1345
The paper demonstrates the potentials of a high speed flap installed upstream of the intake valve of a HSDI diesel engine, to control the amount of fresh mixture and its composition. This switching device will not only enable the impulse charging or Miller-Cycle, but also a new method of external EGR.
X