Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Oxidation Stability of Biodiesel Produced from Non-Edible Oils of African Origin

2011-04-12
2011-01-1202
Mono alkyl esters of long-chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, also known as biodiesel are well positioned to replace mineral diesel. The outstanding technical problem with biodiesel is that it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. The chemical reactivity of esters can therefore be divided into oxidative and thermal instability, which can be determined by the amount and configuration of the olefinic unsaturation in the fatty acid chains. Many of the plant-derived fatty oils contain polyunsaturated fatty acids that are more prone to oxidation. Increasing production of biodiesel from vegetable oils (edible) places strain on food production, availability and price and leads to food versus fuel conflict.
Technical Paper

Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine

2016-02-01
2016-28-0257
IC engines are facing two major challenges in the 21st century namely threat of fossil fuel depletion and environmental concerns. HCCI engine is an attractive solution to meet stringent emission challenges due to its capability to simultaneously reduce NOx and PM. HCCI technology can be employed with different alternative fuels without significant modifications in the existing engines. In this study, HCCI combustion was investigated using B20 (20% v/v biodiesel with diesel). Investigations were carried out on a two cylinder engine, in which one cylinder was modified to operate in HCCI mode however the other cylinder operated in conventional CI combustion mode. A dedicated fuel vaporizer was used for homogeneous fuel-air mixture preparation. The experiments were performed at three different intake charge temperatures (160°C, 180°C and 200°C) and three different EGR ratios (0%, 10% and 20% EGR) at different engine loads.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

An Experimental Investigation of Combustion, Emissions and Performance of a Diesel Fuelled HCCI Engine

2012-01-09
2012-28-0005
Homogeneous charge compression ignition (HCCI) is an advanced combustion concept that is developed as an alternative to diesel engines with higher thermal efficiency along with ultralow NOx and PM emissions. To study the performance of this novel technique, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode while other cylinder operates in conventional CI mode. The quality of homogeneous mixture of air and fuel is the key feature of HCCI combustion. Low volatility of diesel is a major hurdle in achieving HCCI combustion because it is difficult to make a homogeneous mixture of air and fuel. This problem is resolved by external mixture preparation technique in uses a dedicated diesel vaporizer with an electronic control system. All the injection parameters such as fuel quantity, fuel injection timing, injection delay etc., are controlled by the injection driver circuit.
X