Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Tribological Synergism of Surface TiO2 Nanoparticles and Sulfurized Olefin

2008-06-23
2008-01-1618
One type of TiO2 nanoparticles modified by stearic acid was prepared by sol-gel method and its structure was characterized using Laser Particle Analyzer (LPA) and Freeze-Etching Electron Microscopy (FEEM). To evaluate the benefits of the nanoparticles used as substitute for sulfurized olefins in gear oils, the tribological properties of a mixture of TiO2 nanoparticles with a S-containing additive in base oil were investigated using four-ball tribotester. The experimental results show that there are some synergistic effects between the two additives. In addition, the function mechanism of TiO2 nanoparticles in the tribological process was elucidated by the use of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM).
Technical Paper

Thermal Efficiency Analyses of Diesel Low Temperature Combustion Cycles

2007-10-29
2007-01-4019
Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles on a common-rail diesel engine with a conventional diesel fuel. Empirical studies have been conducted under independently controlled exhaust gas recirculation, intake boost, and exhaust backpressure. Up to 8 fuel injection pulses per cylinder per cycle have been applied to modulate the homogeneity history of the early injection diesel low temperature combustion operations in order to improve the phasing of the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the major parameters that affect diesel low temperature combustion engine thermal efficiency.
Technical Paper

Theory and Experiments on Air-Entrainment in Fuel Sprays and Their Application to Interpret Diesel Combustion Processes

1995-02-01
950447
This paper presents a theory and its experimental validation for air entrainment changes into fuel sprays in DI diesel engines. The theory predicts air entrainment changes for a variety of swirl speeds, number of nozzle holes, nozzle diameters, engine speeds, injection speeds and fuel densities. The formulae of the theory are simple non-dimensional equations, which apply for different sized engines. Experiments were performed to compare theoretical predictions and experimental results in six different engines varying from 85 to 800mm bore. All results showed good agreement with the theoretical predictions for shallow-dish piston engines. However the agreement became poor in the case of deep cavity piston engines. With the theory, it is possible to interpret a variety of combustion phenomena in diesel engines, providing additional understanding of diesel combustion processes.
Technical Paper

The Potential for Reducing CO and NOx Emissions from an HCCI Engine Using H2O2 Addition

2003-10-27
2003-01-3204
The effects of hydrogen peroxide addition on iso-octane/air Homogeneous Charge Compression Ignition (HCCI) combustion have been investigated analytically. Particular attention was focused on the predications involving homogeneous gas-phase kinetics. Use was made of Peters' iso-octane mechanism in CHEMKIN and convective heat transfer was included in the analyses. This enabled the influences that H2O2 addition has on species concentration and ignition promotion and hence exhaust emissions to be determined. It was found that both CO and NOx emission levels could be ameliorated. The former effect is considered to be a result of the decomposition of H2O2 into OH intermediate species and hence reducing the time to ignition and the onset of combustion.
Technical Paper

The Impact of Intake Dilution and Combustion Phasing on the Combustion Stability of a Diesel Engine

2014-04-01
2014-01-1294
Conventionally, the diesel fuel ignites spontaneously following the injection event. The combustion and injection often overlap with a very short ignition delay. Diesel engines therefore offer superior combustion stability characterized by the low cycle-to-cycle variations. However, the enforcement of the stringent emission regulations necessitates the implementation of innovative diesel combustion concepts such as the low temperature combustion (LTC) to achieve ultra-low engine-out pollutants. In stark contrast to the conventional diesel combustion, the enabling of LTC requires enhanced air fuel mixing and hence a longer ignition delay is desired. Such a decoupling of the combustion events from the fuel injection can potentially cause ignition discrepancy and ultimately lead to combustion cyclic variations.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Technical Paper

Study on Exhaust Control Valves and Direct Air-Fuel Injection for Improving Scavenging Process in Two-Stroke Gasoline Engines

1996-02-01
960367
A critical factor in improving performance of crankcase-scavenged two-stroke gasoline engines is to reduce the short-circuiting of the fresh charge to the exhaust in the scavenging process. To achieve this, the authors developed a reciprocating exhaust control valve mechanism and direct air-fuel injection system. This paper investigates the effects of exhaust control valve and direct air-fuel injection in the all aspect of engine performance and exhaust emissions over a wide range of loads and engine speeds. The experimental results indicate that the exhaust control valve and direct air-fuel injection system can improve specific fuel consumption, and that HC emissions can be significantly reduced by the reduction in fresh charge losses. The pressure variation also decreased by the improved combustion process. CRANKCASE SCAVENGED two-stroke gasoline engines suffer from fresh charge losses leading to poor fuel economy and it is a reason for large increases of HC in the exhaust.
Technical Paper

Study of Low Temperature Combustion with Neat n-Butanol on a Common-rail Diesel Engine

2015-03-10
2015-01-0003
This study investigates neat n-butanol, as a cleaner power source, to directly replace conventional diesel fuels for enabling low temperature combustion on a modern common-rail diesel engine. Engine tests are performed at medium engine loads (6∼8 bar IMEP) with the single-shot injection strategy for both n-butanol and diesel fuels. As indicated by the experimental results, the combustion of neat n-butanol offers comparable engine efficiency to that of diesel while producing substantially lower NOx emissions even without the use of exhaust gas recirculation. The greater resistance to auto-ignition allows n-butanol to undergo a prolonged ignition delay for air-fuel mixing; the high volatility helps to enhance the cylinder charge homogeneity; the fuel-borne oxygen contributes to smoke reduction and, as a result, the smoke emissions of n-butanol combustion are generally at a near-zero level under the tested engine operating conditions.
Technical Paper

Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile

2024-04-09
2024-01-2702
The majority of transportation systems have continued to be powered by the internal combustion engine and fossil fuels. Heavy-duty applications especially are reliant on diesel engines for their high brake efficiency, power density, and robustness. Although engineering developments have advanced engines towards significantly fewer emissions and higher efficiency, the use of fossil-derived diesel as fuel sets a fundamental threshold in the achievable total net carbon reduction. Dimethyl ether can be produced from various renewable feedstocks and has a high chemical reactivity making it suitable for heavy-duty applications, namely compression ignition direct injection engines. Literature shows the successful use of DME fuels in diesel engines without significant hardware modifications.
Technical Paper

Spark Ignition Circuit Energy Characterization based on a Simplified Model and Measurement Analysis

2015-04-14
2015-01-1271
The spark ignition circuit inside an internal combustion engine system is the source which provides the initiation energy required for triggering combustion in a spark ignition (SI) engine in-cylinder air/fuel mixture. Proper spark phasing and adequate spark energy release in spark ignited combustion would yield significant combustion efficiency improvement and affect the in-cylinder production species composition. In this work a simplified spark ignition circuit model constructed based on circuit theorems is proposed. Measurements on how ignition pressure, secondary circuit series resistance and dwell duration would affect the ignition energy migration are presented. Simulations using the proposed model have also demonstrated similar energy migration trends to measurement results which show the influences caused by different secondary series resistance and dwell durations.
Technical Paper

Smokeless, Low NOx, and Low Noise Diesel Combustion with Methanol as a Main Fuel

1981-11-01
811375
In order to obtain improved combustion of methanol in a dual fuel diesel engine, both methanol and gas oil as an auxiliary fuel were injected into a pre-combustion chamber. The effects of proportion and timing of the auxiliary fuel injection, and the main injection timing on the engine performance and on emissions were investigated. As a result, with methanol 95% of total energy input, combustion took place without misfiring or knocking. The combustion was smokeless, smoother, with lower NOx, and lower noise than for usual combustion with gas oil. The thermal efficiency was maintained at the same level as in conventional diesel operation.
Technical Paper

Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate

1995-10-01
952518
Extensive experiments were conducted on a low emission DI diesel engine by using Dimethyl Carbonate (DMC) as an oxygenate fuel additive. The results indicated that smoke reduced almost linearly with fuel oxygen content. Accompanying noticeable reductions of HC and CO were attained, while a small increase in NOx was encountered. The effective reduction in smoke with DMC was maintained with intake charge CO2, which led to low NOx and smoke emissions by the combined use of oxygenated fuel and exhaust gas recirculation (EGR). Further experiments were conducted on an optically accessible combustion bomb and a thermal cracking set-up to study the mechanisms of DMC addition on smoke reduction.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Journal Article

Preliminary Investigation of Exhaust Pressure Waves in a Single Cylinder Diesel Engine and the Impacts on Aftertreatment Sprays

2017-03-28
2017-01-0616
The pressure wave actions were investigated in the exhaust system of a single cylinder diesel engine through both experimental and simulation methods. The characteristics of the exhaust pressure waves under different engine operating conditions, such as engine load and exhaust backpressure, were examined. The results showed that the strength of the exhaust pressure wave was affected by both the in-cylinder pressure and the exhaust backpressure in the exhaust system during the period when the exhaust valves were open. The exhaust gas flow velocity was also estimated by the one dimensional simulation tool AVL BOOST™. The results suggested that the velocity of the exhaust gas fluctuated during the engine cycle, and followed trends similar to the exhaust pressure wave. The transient gas flow velocity was high when there was a strong compression wave, and it was reduced when the pressure fluctuations in the exhaust manifold were small.
Technical Paper

Preliminary Energy Efficiency Analysis of an EGR Fuel-Reformer

2004-10-25
2004-01-2918
Diesel engine exhausts commonly contain a high level of surplus oxygen and a significant amount of thermal energy. In this study the authors have theoretically investigated a way of utilizing the thermal energy and the surplus oxygen of exhaust gases to produce gaseous fuel in a rich combustor placed in an exhaust gas recirculation (EGR) loop. In the rich combustor, a small amount of diesel fuel will be catalytically reformed on a palladium/platinum based catalyst to produce hydrogen and carbon monoxide. Since the catalytic EGR reformer is incorporated in the EGR loop, it enables the partial recovery of exhaust heat. The gaseous fuel produced in the rich combustor can be brought back into the engine in a pre-mixed condition, potentially reducing soot formation. The preliminary energy efficiency analysis has been performed by using CHEMKIN and an in-house engine simulation software SAES.
Technical Paper

Preliminary Energy Efficiency Analyses of Diesel EGR Fuel Reforming with Flow Reversal and Central Fuelling

2007-10-29
2007-01-4035
The diesel fuel reforming process in an exhaust gas recirculation (EGR) loop of a diesel engine is capable of utilizing the engine exhaust energy to support the endothermic process of hydrogen gas generation. However, the EGR stream commonly needs to be heated to enable the operation of the reformer and thus to sustain higher yield of hydrogen. A central-fuelling and flow-reversal embedment that is energy-efficient to raise the central temperatures of the catalytic flow-bed is therefore devised and tested to drastically reduce the supplemental heating to the EGR reformer. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions. This research attempts to quantify the energy saving by the catalytic flow-reversal and central-fuelling embedment in comparison to a unidirectional flow EGR reformer.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
X