Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Transportation of Liquid Fuel Droplets in the Pulsative Air Flow Within the S.I. Engine Intake Manifold

1981-02-01
810497
An extensive amount of research has been carried out by various authors on the entrainment of fuel droplets in a steady air flow, in order to understand the transportation of droplet fuel in the spark-ignition engine intake manifold system. However, the utility of this type of steady state model is very limited when applied to the real engine where the air flow is highly pulsative. The present work develops a theoretical model of the flow of fuel droplets entrained in a non-steady air flow which requires the solution of a set of unsteady one-dimensional two phase flow equations by a numerical technique. This model is then applied to a single-cylinder spark-ignition engine fitted with both intake and exhaust manifold systems and also a carburettor.
Technical Paper

Transient Response of Turbocharged Diesel Engines

1977-02-01
770122
The problem of highly rated turbocharged diesel engines operating under transient load conditions is now well known, and is due to the inability of the turbocharger to supply sufficient air for good combustion. In Part 1, two methods are discussed for reducing turbocharger lag-air injection onto the compressor rotor and oil injection onto a small pelton wheel mounted on the turbocharger shaft. Results are given showing the benefit of fitting these devices to an engine on a test bed. Engine response is improved in all respects particularly smoke and overall response time. In Part 2, a simulation study of a turbocharged diesel engine installed in a 32 tonne truck is presented to investigate the engine performance during load and speed changes. It is shown that by injecting compressed air on to the turbocharger compressor rotor tip, smoke emissions from the engine during load changes are reduced.
Technical Paper

The Variation of Friction and Combustion Rates During Diesel Engine Transients

1981-02-01
810339
A comprehensive investigation of the performance of a 6-cylinder turbocharged engine was undertaken under steady state and transient conditions. Friction was measured under steady state conditions and a formula for calculating fmep is proposed. It was found that friction under transient conditions is higher than would be predicted from quasi-steady considerations. A combustion model was applied to the engine during steady state and transient conditions. It was found that combustion deteriorated under transient conditions even after including turbocharger lag effects.
Technical Paper

The Long Distance Road Trial of a Combined Diesel Particulate Filter and Fuel Additive

2000-10-16
2000-01-2849
Trapping diesel particulates is effective in reducing both the number and the mass of fine particulate emissions from diesel engines, but unless the accumulated soot can be burned out or regenerated periodically, the vehicle to which the trap is fitted will cease to function after a relatively short time. A programme of work with soot traps using a low treat rate iron-strontium organo-metallic fuel additive to assist and secure regeneration has been carried out. As part of this programme, an advanced specification diesel engine passenger car equipped with a diesel particulate filter (DPF), was operated on roads in the UK for approximately 18 months, during which time the vehicle covered over 50,000 km After completion of 50,000 km on roads, the vehicle was operated on a chassis dynamometer to increase the distance covered with a DPF more rapidly to a final total of 80,000 km.
Technical Paper

The Emerging Market for Biodiesel and the Role of Fuel Additives

2007-07-23
2007-01-2033
With growing concern over greenhouse gases there is increasing emphasis on reducing CO2 emissions. Despite engine efficiency improvements plus increased dieselisation of the fleet, increasing vehicle numbers results in increasing CO2 emissions. To reverse this trend the fuel source must be changed to renewable fuels which are CO2 neutral. A common route towards this goal is to substitute diesel fuel with esterified seed oils, collectively known as Fatty Acid Methyl Esters. However a fundamental change to the fuel chemistry produces new challenges in ensuring compatibility between fuel and engine performance/durability. This paper discusses the global situation and shows how fuel additives can overcome the challenges presented by the use of biodiesel.
Technical Paper

The Effect of DI Nozzle Fouling on Fuel Spray Characteristics

1992-10-01
922232
The atomisation characteristics of DI diesel engine fuel injection nozzles have been the subject of intensive study over the last decade. Much of this work has been related to clean, single hole nozzles spraying into quiescent air, at either ambient conditions or elevated pressures and temperatures. Experience shows that fuel injector nozzles may foul very rapidly in field service, and that this might have a significant effect on the performance of the engine particularly with regard to emissions. The build up of material on the injector nozzle can be controlled by the addition of suitable fuel additives. This paper describes test procedures developed to assess deposit build up and to indicate the efficacy of keep clean additives. The paper then goes on to describe high speed photographic techniques for studying the fuel spray characteristics of clean and fouled injectors in a firing engine.
Technical Paper

The Accuracy of Calculating Wave Action in Engine Intake Manifolds

1990-02-01
900677
This paper describes a comparison between calculated and measured pressure traces and air mass flows through a family of inlet manifold geometries. It is shown that a non-linear wave action calculation technique, based on the method of characteristics, can accurately predict the detailed variation of pressure in the manifold over a broad range of engine speed: it can also accurately predict the mass flow. It is shown that it is necessary to include end effects for the various pipes in order to obtain realistic predictions. The mass flow can be predicted to better than 2% over the majority of the engine operating speed, although the accuracy decreases slightly at the tuning speeds. This reduction in accuracy is probably due to the increased losses resulting from the higher velocities and flow reversals occurring at the tuned speeds.
Journal Article

Temperature Programmed Oxidation as a Technique for Understanding Diesel Fuel System Deposits

2010-05-05
2010-01-1475
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
Technical Paper

Studying the Effectiveness of Multi-Stage Fuel Injection in a Dl Diesel Engine using Combustion Visualisation and the Spectroscopic Method

2000-01-15
2000-01-1427
IC Engines are widely used as power plants for automobiles. The rapid growth in the number of automobiles has caused increased environmental pollution. Therefore, emission legislation was introduced to keep the pollution within acceptable limits. It is becoming more stringent day by day, and is the driving force for the development and application of various experimental and computational techniques for engine combustion and emission studies. Multi-stage fuel injection, VCO nozzles, retarded fuel injection timing, reentrant combustion chamber, etc. are some of the means of reducing the exhaust emissions. A study involving in-cylinder combustion visualisation and an optical method (spectroscopic method) is reported in this paper. Using this technique, the effect of multi-stage fuel injection at various engine operating conditions was studied. A Ricardo Hydra single cylinder, direct injection optical diesel engine was used for this study.
Technical Paper

Steady-Flow Loss-Coefficient Estimation for Exhaust Manifold Pulse-Converter Type Junctions

1999-03-01
1999-01-0213
Computer programs to simulate the gas dynamics of internal combustion engines are commonly used by manufacturers to aid optimization. These programs are typically one-dimensional and complex flow features are included as ‘special’ boundaries. One such boundary is the ‘pressure-loss’ junction model, which allows the inclusion of directionality effects brought about by the geometry of a manifold junction. The pressure-loss junction model requires empirical, steady-flow pressure-loss data, which is both time consuming and expensive to obtain, and also requires the junction to be manufactured before its performance can be established. This paper presents a technique for estimating the steady-flow data, thus obviating the need to perform these flow-tests.
Journal Article

Sodium Contamination of Diesel Fuel, its Interaction with Fuel Additives and the Resultant Effects on Filter Plugging and Injector Fouling

2013-10-14
2013-01-2687
Diesel fuel distilled from crude oil should contain no greater than trace amounts of sodium. However, fuel specifications do not include sodium; there is a limit of five parts per million for the amount of sodium plus potassium in fatty acid methyl esters (FAME) used as biodiesel. Sodium compounds are often used as the catalyst for the esterification process for producing FAME and sodium hydroxide is now commonly used in the refining process to produce ultra-low sulphur diesel (ULSD) fuel from crude oil. Good housekeeping should ensure that sodium is not present in the finished fuel. A finished fuel should not only be free of sodium but should also contain a diesel fuel additive package to ensures the fuel meets the quality standards introduced to provide reliable operation, along with the longevity of the fuel supply infrastructure and the diesel engines that ultimately burn this fuel.
Technical Paper

Service Application of a Novel Fuel Borne Catalyst Dosing System for DPF Retrofit

2005-04-11
2005-01-0669
A dosing system has been developed to facilitate the addition of a fuel borne catalyst (FBC) to a vehicle's fuel supply. The on-board dosing system was primarily designed to reduce cost and complexity. One embodiment of the design provided an additional benefit, namely the automatic adjustment of treat rate according to duty cycle. For high duty operating cycles where average exhaust gas temperatures are high, a low treat rate of FBC is supplied. Conversely at low duty where the exhaust temperature is lower, a higher treat of FBC is delivered. Data from field applications are presented to demonstrate this feature.
Technical Paper

Retrofitting of Diesel Particulate Filters - Particulate Matter and Nitrogen Dioxide

2003-05-19
2003-01-1883
A diesel particulate filter (DPF) is a crucial weapon in the fight to control the downsides traditionally associated with diesel engined vehicles. The DPF not only produces the benefits required from an environmental standpoint but also has the consumer benefit of eliminating the visible black smoke associated with diesel engines. Thus DPFs have now become a reality, both for series production vehicles and as a retrofit application. Inevitably there are a number of alternative types of DPF and alternative techniques are used for ensuring they continue to function in an acceptable manner. Due to the complexity of the diesel combustion process and the emissions produced it is only to be expected that a device intended primarily to control one parameter would have some effect on other parameters. This paper looks at some different DPF technologies and how they effect emissions, with the emphasis on particulate emissions and the speciation of oxides of nitrogen.
Technical Paper

Retrofitting Urban Buses to Reduce PM and NO2

2004-06-08
2004-01-1939
In an attempt to improve ambient air quality, retrofit programmes have been encouraged; targeting reductions in PM emissions by means of diesel particulate filters (DPFs). However depending on the DPF design and operating conditions increased nitrogen dioxide (NO2) emissions have been observed, which is causing concern. Previous work showed that retrofitting a DPF system employing a fuel borne catalyst (FBC) to facilitate regeneration, reduced NO2 emissions. This paper outlines the investigation of a base metal coated DPF to enhance the reduction of NO2. Such a DPF system has been fitted to older technology buses and has demonstrated reliable field performance.
Technical Paper

Retrofitting TRU-Diesel Engines with DPF-Systems Using FBC and Intake Throttling for Active Regeneration

2005-04-11
2005-01-0662
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
Technical Paper

Results From a ¼ Million km, Heavy-Duty Truck Trail, Using FBC Regenerated DPFs

2004-03-08
2004-01-0074
Diesel particulate filters (DPF), in conjunction with fuel borne catalysts (FBC) to facilitate regeneration, are now an accepted technology for passenger car application. Retrofitting of such systems has demonstrated the possibility of applying this technology to heavy-duty vehicles. To demonstrate the efficacy of DPF/FBC systems and to assess their affect on engine durability and economy, five heavy-duty trucks were fitted with DPF/FBC systems. After the completion of over ¼ million kms four trucks underwent a full engine strip-down and rating. This paper briefly reviews the installation of the systems and their effect on the regulated emissions, present details of the mileage accumulation and of the engine strip-downs. The conclusions drawn are that after a ¼ million km of use with the DPF/FBC systems the trucks had not suffered any abnormal deterioration and in fact there was some indication of reduced wear on the engine.
Technical Paper

Preliminary Results from a Six Vehicle, Heavy Duty Truck Trial, Using Additive Regenerated DPFs

2002-03-04
2002-01-0431
Impending legislation will make it almost inevitable that heavy-duty trucks will have to be fitted with some form of particulate removal after-treatment device. The challenge is to provide a system that is not only environmentally acceptable and cost effective but also durable enough to meet the demands of the trucking industry. Diesel particulate filters (DPF), in conjunction with fuel borne catalysts to facilitate regeneration, are now a recognised technology for meeting future passenger car emissions limits. Retrofitting of such systems to older technology vehicles, where specific environmental concerns exist, has demonstrated the possibility of applying this technology to the heavy-duty vehicle sector. Most of these retrofit applications tend to be to vehicles with a relatively low duty cycle. Whereas this type of duty cycle poses the greatest challenge to the successful regeneration of the filters it is not necessarily the most arduous test of the durability of the system.
Technical Paper

Practical Experience of Fitting DPFs to Buses in Chile

2005-05-11
2005-01-2146
Continuing research into the effect of vehicle emissions is driving legislation, which is increasingly being enacted to encourage the retrofitting of emissions control devices. Of particular concern are emissions of diesel particulate matter and nitrogen oxides. More recently the adverse effects of nitrogen dioxide in particular, have been highlighted. A programme of work is underway in Santiago to demonstrate the suitability of retrofitting diesel particulate filters (DPF) to urban buses. This paper presents data, including regulated and unregulated emissions, from a bus fitted with a DPF that relies on a fuel borne catalyst (FBC) to facilitate regeneration of the DPF.
Journal Article

Possible Mechanism for Poor Diesel Fuel Lubricity in the Field

2012-04-16
2012-01-0867
Traditionally, diesel fuel injection equipment (FIE) has frequently relied on the diesel fuel to lubricate the moving parts. When ultra low sulphur diesel fuel was first introduced into some European markets in the early 1980's it rapidly became apparent that the process of removing the sulphur also removed other components that had bestowed the lubricating properties of the diesel fuel. Diesel fuel pump failures became prevalent. The fuel additive industry responded quickly and diesel fuel lubricity additives were introduced to the market. The fuel, additive and FIE industries expended much time and effort to develop test methods and standards to try and ensure this problem was not repeated. Despite this, there have recently been reports of fuel reaching the end user with lubricating performance below the accepted standards.
Technical Paper

Possible Influence of High Injection Pressure on Diesel Fuel Stability: A Review and Preliminary Study

2009-06-15
2009-01-1878
Recent developments in diesel engines and fuel injection equipment combined with the change to ULSD and bio-blends have resulted in increased reports regarding deposits within injectors and filters. A review of known fuel degradation mechanisms and other relevant chemistries suggests the effects of high pressure and high shear environments should be examined as the most probable causes of increasing deposit formation. Existing fuel quality tests do not correlate with reported fouling propensity. Analytical studies have shown that there are only subtle chemical changes for the materials within the standard diesel boiling range. The implications for further scientific study are discussed.
X