Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Womb to Tomb SPC Control of Fasteners from Rivet Manufacture to Installation using Existing Software

2003-09-08
2003-01-2958
Controlling rivet tolerances, and the hole tolerances that these rivets are inserted into, are some of the most important requirements in the manufacture of aircraft. Because of the laminar air flow over the outside of the skin in all aircraft, and the stealth requirements of military aircraft, the rivets must sit flush with the Outside Mode Line of the exterior skin. This countersink depth must be tightly controlled in tolerance, both in the hole diameter & countersink, and also in the manufacture of the rivets. In the past, the aircraft OEM's have driven, independently, the rivet manufacturer and the machine manufacturer drilling the holes, to control tighter and tighter tolerances. The conventional way to get better performance is to implement SPC independently into the rivet manufacturing process and also into the machine hole drilling process. Let's consider first the rivet manufacturing process.
Technical Paper

VP-SIM: A Unified Approach to Energy and Power Flow Modeling Simulation and Analysis of Hybrid Vehicles

2000-04-02
2000-01-1565
The aim of this paper is to describe a unified approach to modeling the energy efficiency and power flow characteristics of energy storage and energy conversion elements used in hybrid vehicles. Hybrid vehicle analysis and design is concerned with the storage of energy in three domains - chemical, mechanical, and electrical - and on energy conversions between these domains. The paper presents the physical and mathematical basis of this modeling approach, as well as a modular simulator that embodies the same basic principles. The use of the simulator as an analysis tool is demonstrated through the conceptual design of a sport-utility hybrid drivetrain.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Technical Paper

The Impact of Worn Shocks on Vehicle Handling and Stability

2006-04-03
2006-01-0563
The intent of this research is to understand the effects worn dampers have on vehicle stability and safety through dynamic model simulation. Dampers, an integral component of a vehicle's suspension system, play an important role in isolating road disturbances from the driver by controlling the motions of the sprung and unsprung masses. This paper will show that a decrease in damping leads to excessive body motions and a potentially unstable vehicle. The concept of poor damping affecting vehicle stability is well established through linear models. The next step is to extend this concept for non-linear models. This is accomplished through creating a vehicle simulation model and executing several driving maneuvers with various damper characteristics. The damper models used in this study are based on splines representing peak force versus velocity relationships.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

Simulation-Based Hybrid-Electric Vehicle Design Search

1999-03-01
1999-01-1150
A computer simulation has been developed that models conventional, electric, and hybrid drivetrains. The vehicle's performance is predicted for a given driving cycle, such as the Federal Urban Driving Schedule (FUDS). This computer simulation was used in a massive designspace exploration to simulate 1.8 million different vehicles, including conventional, electric, and hybrid-electric vehicles (HEVs). This paper gives a description of the vehicle simulator as well as the results and implications of the large design-space exploration.
Technical Paper

Refinement of a Parallel-Series PHEV for Year 3 of the EcoCAR 2 Competition

2014-10-13
2014-01-2908
The EcoCAR 2 team at the Ohio State University has designed an extended-range electric vehicle capable of 44 miles all-electric range, which features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and a 6-speed automated manual transmission. This vehicle is designed to reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report documents the team's refinement work on the vehicle during Year 3 of the competition, including vehicle improvements, control strategy calibration and dynamic vehicle testing, culminating in a 99% buy off vehicle that meets the goals set forth by the team. This effort was made possible through support from the U.S. Department of Energy, General Motors, The Ohio State University, and numerous competition and local sponsors.
Technical Paper

Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control

2019-04-02
2019-01-1213
Global regulatory targets and customer demand are driving the automotive industry to improve vehicle fuel efficiency. Methods for achieving increased efficiency include improvements in the internal combustion engine and an accelerating shift toward electrification. A key enabler to maximizing the benefit from these new powertrain technologies is proper systems integration work - including developing optimized controls for the propulsion system as a whole. The next step in the evolution of improving the propulsion management system is to make use of available information not typically associated with the powertrain. Advanced driver assistance systems, vehicle connectivity systems and cloud applications can provide information to the propulsion management system that allows a shift from instantaneous optimization of fuel consumption, to optimization over a route. In the current paper, we present initial work from a project being done as part of the DOE ARPA-E NEXTCAR program.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Optimizing Control Strategy for Hybrid Fuel Cell Vehicle

2002-03-04
2002-01-0102
This paper presents a general formulation of the instantaneous power split between a fuel cell and an electrical accumulator in a charge-sustaining fuel cell hybrid vehicle. The approach proposed in this paper is based on the ECMS (Equivalent Consumption Minimization Strategy) control strategy previously developed for parallel hybrid vehicle applications suitable for real time application and allowing the overall minimization of hydrogen consumption while meeting the driver demand. This control strategy has been applied to a representative hybrid PEM (Proton Exchange Membrane) fuel cell mid-size vehicle. Using a Hybrid Fuel Cell vehicle simulator, the vehicle performance and energy requirements are estimated. The results provided by the ECMS control strategy approach are also compared to a more basic approach.
Technical Paper

Optimizing Battery Cooling System for a Range Extended Electric Truck

2019-04-02
2019-01-0158
Battery packs used in electrified automotive powertrains support heavy electrical loads resulting in significant heat generation within them. Cooling systems are used to regulate the battery pack temperatures, helping to slow down battery aging. Vehicle-level energy consumption simulations serve as a first step for determining the specifications of a battery cooling system based on the duty cycle and interactions with the rest of the powertrain. This paper presents the development of a battery model that takes into account the energy impact of heating in the battery and demonstrates its use in a vehicle-level energy consumption simulator to set the specifications of a suitable cooling system for a vehicle application. The vehicle application used in this paper is a Class 6 Pickup and Delivery commercial vehicle with a Range-Extended Electric Vehicle (REEV) powertrain configuration.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Operation and Control Strategies for Hybrid Electric Automobiles

2000-04-02
2000-01-1537
Currently Hybrid Electric Vehicles (HEV) are being considered as an alternative to conventional automobiles in order to improve efficiency and reduce emissions. A major concern of these vehicles is how to effectively operate the electric machine and the ICE. Towards this end two operation strategies, an best efficiency and a least fuel use strategy, are presented in this paper. To demonstrate the potential of an advanced operation strategy for HEV's, a fuzzy logic controller has been developed and implemented in simulation in the National Renewable Energy Laboratory's simulator Advisor (version 2.0.2). Results have also been gathered from chassis dynamometer tests in order to verify the effectiveness of Advisor. The Fuzzy Logic Controller (FLC) utilizes the electric motor in a parallel hybrid electric vehicle (HEV) to force the ICE (66KW Volkswagen TDI) to operate at or near its peak point of efficiency or at or near its best fuel economy.
Technical Paper

Onboard Diagnosis of Engine Misfires

1990-09-01
901768
The integrity of the exhaust emission system in a passenger vehicle can best be maintained by monitoring its performance continuously on board the vehicle. It is with the intent of monitoring emission system performance that the California Air Resources Board has proposed regulations which will require vehicles to be equipped with on-board monitoring systems. These proposed regulations are known as OBDII and will probably be followed by similar Federal EPA regulations.This paper discusses a method of monitoring engine misfire as part of the OBDII requirements for passenger vehicle on-board diagnostics. The method is relatively inexpensive in that it uses an existing sensor for measuring instantaneous crankshaft angular position, and utilizes electronic signal processing which can be implemented in relatively inexpensive custom integrated circuits.
Technical Paper

On-Line Estimation of Indicated Torque in IC Engines Using Nonlinear Observers

1995-02-01
950840
An approach to fault diagnosis for internal combustion engines is considered. It is based on the estimation of cylinder indicated torque by means of sliding mode observers. Instead of measuring indicated pressure in cylinders directly, crankshaft speed is measured as the input of observers, which estimate the indicated torque. Several engine models are considered with different levels of complexity. The indicated torque estimation using sliding mode observers is based on the equivalent control method. The estimation technique is validated experimently on a research engine.
Technical Paper

Objective Metrics of Fuel Economy, Performance and Driveability - A Review

2004-03-08
2004-01-1338
Fuel economy, performance and driveability are three important subjects for evaluating vehicle performance. Evaluations in both simulations and real vehicles prefer objective and quantitative measures. Subjective and descriptive metrics cannot be easily implemented in simulations, and these evaluations vary with changing time or evaluators. Fuel economy is usually estimated under various city, highway and some other user-defined driving cycles. Performance criteria consist of acceleration/deceleration performance, gradeability and towing capability. Driveability measures deal with pedal responsiveness, operating smoothness and driving comfort. This includes interior noise level, jerk and acceleration parameters. Numerical references and some interpretations of the above metrics are presented in this paper, as well as how these metrics can be used to evaluate vehicle powertrain design and control strategy development.
Technical Paper

Motorsports in the Engineering Curriculum at The Ohio State University

1996-12-01
962498
This paper describes the background and development of a program focused on motorsports engineering education currently in progress at the Ohio State University (OSU). An interdisciplinary curriculum, with the involvement of various engineering departments, is being proposed for development in an attempt to address some of the engineering education needs of the motorsports industry. The program described in this paper strives to provide engineering students with an interdisciplinary background race engineering, and also provides opportunities for motorsports oriented thesis projects. The paper briefly summarizes the key elements of the curriculum, and describes how the integration of course material from different disciplines with team work on student competition projects, possibly coupled with internships with racing teams, can provide an ideal setting for the education of a new generation of race engineers.
Technical Paper

Motor Resolver Fault Diagnosis for AWD EV based on Structural Analysis

2018-04-03
2018-01-1354
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are getting more attention in the automotive industry with the technology improvement and increasing focus on fuel economy. For EVs and HEVs, especially all-wheel drive (AWD) EVs with two electric motors powering front and rear axles separately, an accurate motor speed measurement through resolver is significant for vehicle performance and drivability requirement, subject to resolver faults including amplitude imbalance, quadrature imperfection and reference phase shift. This paper proposes a diagnostic scheme for the specific type of resolver fault, amplitude imbalance, in AWD EVs. Based on structural analysis, the vehicle structure is analyzed considering the vehicle architecture and the sensor setup. Different vehicle drive scenarios are studied for designing diagnostic decision logic. The residuals are designed in accordance with the results of structural analysis and the diagnostic decision logic.
X