Refine Your Search

Topic

Search Results

Technical Paper

Visualization Analysis of Diesel Combustion with Water and Diesel Fuel Emulsified Blend in a Constant Volume Chamber Vessel

2014-11-11
2014-32-0127
Diesel-like combustion of an emulsified blend of water and diesel fuel in a constant volume chamber vessel was visualized with high speed color video, further analyzing with a 2-D two color method and shadowgraph images. When the temperature at the fuel injection is 900 K, here while the combustion with unblended diesel fuel in the vessel is similar to ordinary diesel combustion with diffusive combustion, combustion with the emulsified fuel is similar to premixed diesel combustion with a large premixed combustion and very little diffusive combustion. With the emulsified fuel the flame luminosity and temperature are lower, the luminous flame and high temperature regions are smaller, and the duration of the luminous flame is shorter than with diesel fuel. This is due to promotion of premixing with increases in the ignition delay and decreases in the combustion temperature with the water vaporization.
Technical Paper

Ultra Low Emissions and High Performance Diesel Combustion with a Combination of High EGR, Three-Way Catalyst, and a Highly Oxygenated Fuel, Dimethoxy Methane (DMM)

2000-06-19
2000-01-1819
Ultra low emissions and high performance combustion was achieved with a combination of high EGR, a three-way catalyst, and a highly oxygenated liquid fuel, neat dimethoxy methane (DMM), in an ordinary DI diesel engine. The smokeless nature of neat DMM effectively allowed stoichiometric diesel combustion by controlling BMEP with EGR. NOx, THC, and CO emissions were reduced with a three-way catalyst. At lower BMEP with excess air, the EGR effectively reduced NOx. High-speed video in a bottom view type engine revealed that luminous flame decreased with increased fuel oxygen content and almost disappeared with DMM.
Technical Paper

Ultra Low Emission and High Performance Diesel Combustion with Highly Oxygenated Fuel

2000-03-06
2000-01-0231
Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
Technical Paper

Time-Resolved Behavior of Unburned Hydrocarbon Components in Diesel Exhaust Under Transient Operations

2001-03-05
2001-01-1259
Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
Technical Paper

Thermal efficiency improvement in twin shaped semi- premixed diesel combustion with a combustion chamber dividing fuel sprays and optimization of fuel ignitability

2023-09-29
2023-32-0051
The authors have reported significant smoke reduction in twin shaped semi-premixed diesel combustion with a newly designed combustion chamber to distribute the first and the second sprays into upper and lower layers. However, the first stage premixed combustion tends to advance far from the TDC, resulting in lowering of thermal efficiencies. In this report, improvement of thermal efficiency by optimizing the combustion phase with lower ignitability fuels was identified with the divided combustion chamber. The experiment was conducted with four fuels with different cetane numbers. The first stage premixed combustion can be retarded to the optimum phase with the fuel with cetane number 38, establishing high efficiencies.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

1991-02-01
910737
Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Technical Paper

The Effect of Oxygenated Fuel Additive on the Reduction of Diesel Exhaust Particulates

2001-05-07
2001-01-2020
The blending of dimethyl carbonate (DMC), which contains 53% of oxygen, in diesel fuel is very effective to suppress the formation of exhaust particulates, however, the mechanism of the suppression has not been made clear. In this study, the comparison on the performance of gas oil and DMC mixture was achieved. The effect of the oxygen in DMC molecule has to suppress the formation of particulates was monitored by way of using thermal cracking analyzer under various conditions.
Technical Paper

The Effect of Fuel Properties on Particulate Formation (The Effect of Molecular Structure and Carbon Number)

1989-09-01
891881
Exhaust particulate in diesel engines is affected by fuel properties, but the reason for this is not clear. Interest in using low-grade fuels in diesel engines has made it necessary to understand the particulate formation mechanism and factors to decrease it. Particulate formation has been reported to start with thermal cracking of the fuel to lower boiling point hydrocarbons followed by condensation polymerization and production of benzene ring compounds; the formation of particulate takes place via polycyclic aromatic hydrocarbons. This report investigates the amount and configuration of particulate with a fluid reaction tube and in a nitrogen atmosphere, and analyzes polycyclic aromatic hydrocarbons (PAH) of fuels with different molecular structure and carbon number.
Technical Paper

The Effect of Fuel Properties on Diesel Engine Exhaust Particulate Formation

1989-02-01
890421
Exhaust particulate in diesel engines are affected by fuel properties, especially the aromatic hydrocarbon content and distillation properties, but the reasons for this are not clear. The process of particulate formation has been reported to start with a thermal cracking of the fuel to lower boiling point hydrocarbons followed by condensation polymerization and production of benzene ring compounds; the formation of particulate takes place via polycyclic aromatic hydrocarbons. The fuel properties affect diesel engine particulate because the thermal cracking and condensation polymerization of various fuels are different.
Technical Paper

Study on Combustion and Exhaust Emissions Characteristics of Oxymethylene Dimethyl Ether Blends with Fischer-Tropsch Fuels in Diesel Engines

2023-09-29
2023-32-0167
Synthetic fuels (e-fuels) synthesized from H2 and CO by renewable electricity are expected as the next- generation diesel fuels and two types of e-fuels have received extensive attention: Fischer-Tropsch (FT) fuel and Oxymethylene dimethyl ether (OME). In this study the effects of OME blending ratios with 0 to 50 vol.% in FT fuels on combustion, emissions and spray characteristics in diesel engines are investigated. The results suggest that the OME blends to FT fuels suppressed the deterioration in combustion efficiency under low intake oxygen concentration conditions. The smoke emissions of FT fuels and OME blended fuels were both lower than those of diesel fuel and decreased with the increase in the OME blend ratio, and the soot-NOx trade-off relation in diesel engines can be improved.
Technical Paper

Study of the Combustion Mechanism of Diesel Particulate Matter

2007-08-05
2007-01-3613
As a research of low temperature regeneration of DPF, combustion mechanism of diesel particulate matter (PM) trapped in DPF was investigated. For the assumption of PM combustion mechanism, the relationship between PM combustion characteristics and the physical properties of PM particles was investigated by using thermal and spectroscopic analysis methods. Experimental PM samples were produced under typical engine operating conditions using three representative fuels, two commercial diesel fuels containing aromatics (JIS-2 and Class 1) and a paraffin fuel that was prepared in a gas-to-liquid (GTL) process and did not contain any aromatics. Based upon these characteristics and combustion test results of the PM samples, a mechanism of the PM combustion was assumed. And the crystallinity of PM particles and existence of some surface functional groups containing oxygen are thought to be the important factors to lower the temperature of PM combustion., independent of the fuel type.
Technical Paper

Smokeless, Low NOx, High Thermal Efficiency, and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel

1998-02-23
980506
Diesel combustion and emissions with four kinds of oxygenated agents as main fuels were investigated. Significant improvements in smoke, particulate matter, NOx, THC, and thermal efficiency were simultaneously realized with the oxygenates, and engine noise was also remarkably reduced for the oxygenates with higher ignitability. The improvements in the exhaust emissions and the thermal efficiency depended almost entirely on the oxygen content in the fuels regardless of the oxygenate to diesel fuel blend ratios and type of oxygenate. The unburned THC emission and odor intensity under starting condition with an oxygenate were also much lower than with conventional diesel fuel.
Technical Paper

Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate

1995-10-01
952518
Extensive experiments were conducted on a low emission DI diesel engine by using Dimethyl Carbonate (DMC) as an oxygenate fuel additive. The results indicated that smoke reduced almost linearly with fuel oxygen content. Accompanying noticeable reductions of HC and CO were attained, while a small increase in NOx was encountered. The effective reduction in smoke with DMC was maintained with intake charge CO2, which led to low NOx and smoke emissions by the combined use of oxygenated fuel and exhaust gas recirculation (EGR). Further experiments were conducted on an optically accessible combustion bomb and a thermal cracking set-up to study the mechanisms of DMC addition on smoke reduction.
Technical Paper

Performance Improvements in a Natural Gas Dual Fuel Compression Ignition Engine with 250 MPa Pilot Injection of Diesel Fuel as an Ignition Source

2016-10-17
2016-01-2306
The engine performance and the exhaust gas emissions in a dual fuel compression ignition engine with natural gas as the main fuel and a small quantity of pilot injection of diesel fuel with the ultra-high injection pressure of 250 MPa as an ignition source were investigated at 0.3 MPa and 0.8 MPa IMEP. With increasing injection pressure the unburned loss decreases and the thermal efficiency improves at both IMEP conditions. At the 0.3 MPa IMEP the THC and CO emissions are significantly reduced when maintaining the equivalence ratio of natural gas with decreasing the volumetric efficiency by intake gas throttling, but the NOx emissions increase and excessive intake gas throttling results in a decrease in the indicated thermal efficiency. Under the 250 MPa pilot injection condition simultaneous reductions in the NOx, THC, and CO emissions can be established with maintaining the equivalence ratio of natural gas by intake gas throttling.
Journal Article

Molecular Structure of Hydrocarbons and Auto-Ignition Characteristics of HCCI Engines

2014-11-11
2014-32-0003
The chemical composition of marketed gasoline varies depending on the crude oil, refinery processes of oil refineries, and season. The combustion characteristics of HCCI engines are very sensitive to the fuel composition, and a fuel standard for HCCI is needed for HCCI vehicles to be commercially viable. In this paper, the effects of the structure of the fuel components on auto-ignition characteristics and HCCI engine performance were investigated. The engine employed in the experiments is a research, single cylinder HCCI engine with a compression ratio of 14.7. The intake manifold was equipped with a heater attachment allowing control of the intake air temperature up to 150 °C at 2000 rpm. Thirteen kinds of hydrocarbons, 4 kinds of paraffins, 3kinds of naphthenes, and 6 kinds of aromatics, were chosen for the investigation, and 20vol% of each of the pure hydrocarbons was blended with the 80 vol% of PFR50 fuel.
Technical Paper

Method for Measuring NOx Concentrations in Small Quantities of Sample Gas

1999-10-25
1999-01-3478
This study attempted to measure the concentration of NOx in a small gas sample, with a chromatograph equipped with a flame ionization detector (FID), by reacting NOx as an organic gas with alcohol and converting it into esters of nitrous acid having organic carbon atoms. It was found that since the FID is highly sensitive to hydrocarbons the measurements were difficult with high concentrations of hydrocarbon components with low boiling points at the elution position of the esters of nitrous acid. To resolve this a gas chromatograph equipped with an electron capture detector (ECD), which is selectively sensitive to esters of nitrous acid and not sensitive to hydrocarbon components with low boiling points was used.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Technical Paper

Mechanism of NOx Reduction by Ethanol on a Silver-Base Catalyst

2001-05-07
2001-01-1935
Since there is a trade-off relationship between NOx and particulates in exhaust gas emitted from a diesel engine, simultaneous reduction of the amounts of NOx and particulates in a combustion chamber is difficult. However, the amount of particulates produced in the combustion process could be reduced in a state of almost complete combustion, and the amount of NOx produced during the combustion process could be reduced by the use of a catalyst and reducing agent in the exhaust process. It has been demonstrated that the use of ethanol as a reducing agent on a silver-base catalyst in the presence of oxygen is an effective means for reducing NOx, although the mechanism of the reduction has not been elucidated. Therefore, in the present study, an NOx-reduction apparatus was conducted, and model experiments on NOx reduction were carried out in an atmosphere simulating exhaust gas emitted from a diesel engine and at the same catalyst temperature as that in a combustion chamber.
Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
X