Refine Your Search

Topic

Search Results

Technical Paper

Transient Characteristics of Combustion and Emissions during Start up at Higher Cranking Speed in a PFI Engine for HEV Application

2008-10-06
2008-01-2420
The transient characteristics of combustion and emissions during the engine start up at different higher cranking speeds for hybrid electric vehicle (HEV) applications were presented in this paper. Cycle-by-cycle analysis was done for each start up case. Intake air mass during the first several cycles decrease as the engine was cranked at higher speed. Ignition timing is delayed with higher cranking speed, which leads to an increase of exhaust temperature. For various start up cases, similar quantity of fuel is injected at the first cycle, but the ignition timing is significantly delayed to meet the acceleration requirement when cranking speed enhanced. Because of the deterioration of intake charge, the air-fuel mixture is over-enriched in the first several cycles for the cases at higher cranking speed. With cranking speed is increased, the in-cylinder residual gas fraction rises, which leads to poor combustion and decrease of mass fraction of burned fuel.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

Thermodynamic and Chemical Analysis of the Effect of Working Substances on the Argon Power Cycle

2021-04-06
2021-01-0447
The Argon Power Cycle engine is a novel concept for high efficiency and zero emission through the replacement of N2 by Ar. However, the higher in-cylinder temperature and pressure as by-products cause heavier knock. The anti-knock strategies, such as reducing compression ratio and retarding ignition time, offset the efficiency increased by the Argon Power Cycle. Therefore, knock control becomes the most urgent task for the Argon Power Cycle engine development. The anti-knock methods, including fuel replacement, ultra-lean combustion, high dilution combustion, and water injection, were considered. The simulated ignition delay times were used to evaluate the probability of knock. The Otto cycle, combined with chemical equilibrium, was utilized to confirm the effect on the thermal conversion efficiency and each in-cylinder thermodynamic state parameter. The results show that the ignition delay times increase by a factor of two when the Ar dilution ratio increases from 79% to 95%.
Technical Paper

The Effect of Tuning PMSM Torque to Track Engine Torque on Speed Fluctuation of Range Extender

2021-04-06
2021-01-0784
REEV (Range-Extended Electric Vehicle) can avoid the mileage anxiety of BEV (Battery Electric Vehicle). Nevertheless, RE (Range Extender) for passenger cars prefers to use ICE (Internal Combustion Engine) with smaller displacement and lower cylinder number, which is usually with a worse vibration performance at low speeds. As RE only outputs electricity, it provides the possibility to optimize NVH (Noise, Vibration, and Harshness) of the engine by PMSM (Permanent Magnet Synchronous Motor). By real-time control, the electromagnetic torque of PMSM can track the shaft torque fluctuation during engine strokes, especially the combustion stroke. When the instability and rolling torque of RE could be suppressed, NVH performance of RE can be improved. This paper presents simulation research on speed fluctuation suppression for RE engine based on dynamic torque compensation by controlling a PMSM.
Technical Paper

The Effect of High-Power Capacitive Spark Discharge on the Ignition and Flame Propagation in a Lean and Diluted Cylinder Charge

2016-04-05
2016-01-0707
Research studies have suggested that changes to the ignition system are required to generate a more robust flame kernel in order to secure the ignition process for the future advanced high efficiency spark-ignition (SI) engines. In a typical inductive ignition system, the spark discharge is initiated by a transient high-power electrical breakdown and sustained by a relatively low-power glow process. The electrical breakdown is characterized as a capacitive discharge process with a small quantity of energy coming mainly from the gap parasitic capacitor. Enhancement of the breakdown is a potential avenue effectively for extending the lean limit of SI engine. In this work, the effect of high-power capacitive spark discharge on the early flame kernel growth of premixed methane-air mixtures is investigated through electrical probing and optical diagnosis.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Journal Article

Spray Hot-impingement System Optimization for Premixed Diesel Homogeneous Charge Preparation

2008-04-14
2008-01-0014
In this study, a spray hot-impingement system was set up to analyze the spray characteristics when spray impinged onto a flat hot surface by high-speed photography technology. The angle between spray axis and normal line of the flat surface could be changed, and the surface temperature could exceed 400°C. The influences of surface temperature and heating power on spray atomization were investigated too. At atmospheric pressure, when the wall temperature was 340∼380°C, the impinging diesel spray was well atomized. In this experiment, the wall heating power could be set at 1∼25 Wcm-2. When the heating power was about 1.6 Wcm-2, the impinging spray atomized well, and when it was about 10.1 Wcm-2 the spray atomized better though the heating power requirement should be high.
Technical Paper

Spray Characteristics and Wall-impingement Process with Different Piston Tops for the Multi-hole Injector of DISI Gasoline Engines

2011-04-12
2011-01-1222
Spray characteristics and spray wall-impingement events are the key factors for the direct injection spark ignition (DISI) engines, affecting fuel/air mixture preparation and its combustion process. Thus, the spray characteristics of a multi-hole injector for DISI engines, such as spray tip penetration and spray cone angle were investigated in an optical chamber employing the high-speed shadow photography. Furthermore, the effects of the injection pressure, ambient pressure and piston top shape on the impinging spray development were studied in the optical chamber, when the impinging distance is 26.1 mm, corresponding to about 60 CAD ATDC. In addition, the SMD and wall film thickness of the spray impinging on the piston top were studied by means of CFD technique. The results showed that the ambient pressure had the greater effect on the changes of the spray penetration and spray cone angle than the injection pressure.
Technical Paper

Simulation of charged species flow and ion current detection for knock sensing in gasoline engines with active pre-chamber

2023-09-29
2023-32-0005
Recently, it has been wildly recognized that active pre- chamber has a significant effect on extending the lean burn limit of gasoline engines. Ion current signals in the combustion is also considered as a promising approach to the engine knock detection. In this study, the feasibility of employing ion current in an active pre- chamber for combustion diagnosis was analyzed by three-dimensional numerical simulation on a single- cylinder engine equipped with active pre-chamber. The flow characteristics of charged species (NO+, H3O+ and electrons) in the main chamber and pre-chamber under knock conditions are investigated at different engine speeds, intake pressures and ignition timings. The results show that the ion current can theoretically be used for the knock detection of the active pre- chamber. The peak value of the electron or H3O+ mass fraction caused by knocking backflow can be used as knock indication peak.
Technical Paper

Simulation of Intake Manifold Water Injection in a Heavy Duty Natural Gas Engine for Performance and Emissions Enhancement

2018-09-10
2018-01-1653
The present work discusses the effects of intake manifold water injection in a six-cylinder heavy duty natural gas (NG) engine through one-dimensional simulation. The numerical study was carried out based on GT-Power under different engine working conditions. The established simulation model was firstly calibrated in detail through the whole engine speed sweep under full load conditions before the model of intake manifold water injector was involved, and the calibration was based on experimental data. The intake manifold water injection mass was controlled through adjustment of intake water/gas (water/natural gas) ratio, a water/gas ratio swept from 0 to 4 was selected to investigate the effects of intake manifold water injection on engine performance and emissions characteristics. On the other hand, the enhancement potential of intake manifold water injection in heavy duty NG engine under lean and stoichiometric condition was also investigated by the alteration of air-fuel ratio.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Technical Paper

Numerical Study on Flammability Limit and Performance of Compression-Ignition Argon Power Cycle Engine with Fuel of Hydrogen

2021-04-06
2021-01-0391
The argon power cycle engine, which uses hydrogen as fuel, oxygen as oxidant, and argon other than nitrogen as the working fluid, is considered as a novel concept of zero-emission and high-efficiency system. Due to the extremely high in-cylinder temperature caused by the lower specific heat capacity of argon, the compression ratio of spark-ignition argon power cycle engine is limited by preignition or super-knock. Compression-ignition with direct-injection is one of the potential methods to overcome this challenge. Therefore, a detailed flammability limit of H2 under Ar-O2 atmosphere is essential for better understanding of stable autoignition in compression-ignition argon power cycle engines.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

Numerical Investigations on Formation Process of N2O in Ammonia/Hydrogen Fueled Pre-Chamber Jet Ignition Engine

2023-10-30
2023-01-7023
Ammonia is used as the carbon-free fuel in the engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx in the exhaust emissions is produced after combustion of ammonia and is one kind of the most tightly controlled pollutants in the emission regulation. Nitrous Oxide (N2O) is a greenhouse gas with a very strong greenhouse effect, so that the N2O emissions needs to be paid close attention. In this paper, the CFD simulation of the N2O formation and emission characteristics during combustion is carried in the ammonia/hydrogen fueled pre-chamber jet ignition engine.
Technical Paper

Knock and Pre-Ignition Detection Using Ion Current Signal on a Boosted Gasoline Engine

2017-03-28
2017-01-0792
In order to meet the ever more stringent demands on the CO2 emission reduction, downsized modern gasoline engine with highly boosted turbo charger meets new challenges such as super knock and pre-ignition, which will influence the engine combustion efficiency, smooth operation and even cause mechanical failure. A spark plug type ion current detection sensor was used in a 1.8L turbo charged gasoline engine. The ion-current wave signal differed greatly under different engine operating conditions such as without knock, with knock of different knock intensities. The frequency spectrum of ion-current was also studied, by the method of discrete Fourier transform (DFT). In knocking cycles, there were fluctuations of frequency 8-13 kHz both in the combustion pressure signal and in the ion current signal, proving the existence of knock information.
Technical Paper

Knock Inhibition in Hydrogen Fueled Argon Power Cycle Engine with a Higher Compression Ratio by Water Direct Injection at Late Exhaust Stroke

2023-04-11
2023-01-0227
Hydrogen-fueled Argon Power Cycle engine is a novel concept for high efficiency and zero emissions, which replaces air with argon/oxygen mixtures as working fluid. However, one major challenge is severe knock caused by elevated in-cylinder temperature resulting from high specific heat ratio of Argon. A typical knock-limited compression ratio is around 5.5:1, which limits the thermal efficiency of Argon Power Cycle engines. In this article, preliminary experimental research on the effect of water direct injection at late exhaust stroke is presented at 1000 r/min with IMEP ranging from 0.3~0.6 MPa. Results show that, with temperature-reducing effect of water evaporation, knock is greatly inhibited and the engine can run normally at a higher compression ratio of 9.6:1. Water injected at the exhaust stroke minimizes its reducing effect on the specific heat ratio of the working fluid during the compression and expansion strokes.
Technical Paper

Investigation on the Ignition Properties of 1-Propanol and 1-Butanol under Fuel-Lean Conditions

2021-04-06
2021-01-0564
To mitigate the global warming and to develop sustainable transportation, investigations on combustion properties of carbon neutral fuels i.e., electro-fuels and bio-fuels such as propanol and butanol are essential. In the past, there were very limited researches concerning the fuel-lean combustion of those fuels, which is however a promising method for reducing the NOx emissions. Moreover, the literature chemical kinetic mechanisms have not been widely validated against the fuel-lean combustion data. Ignition delay time (IDT) is one key parameter and is widely used for validation of chemical kinetic mechanisms. The measurements of IDTs of diluted 1-propanol (nC3H7OH, CH3CH2CH2OH) and 1-butanol (nC4H9OH, CH3CH2CH2CH2OH) mixtures (with 90% bath gas (Ar+N2)) were therefore conducted in a rapid compression machine (RCM), at temperatures between 800 and 1000 K, pressures of 20 and 40 bar, under lean combustion conditions with equivalence ratios (ф) of 0.25, 0.5 and 0.9.
X