Refine Your Search

Topic

Search Results

Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Journal Article

The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow

2008-06-23
2008-01-1739
Homogeneous Charge Compression Ignition (HCCI) has emerged as a promising technology for reduction of exhaust emissions and improvement of fuel economy of internal combustion engines. There are generally two proposed methods of realizing the HCCI operation. The first is through the control of gas temperature in the cylinder and the second is through the control of chemical reactivity of the fuel and air mixture. EGR trapping, i.e., recycling a large quantity of hot burned gases by using special valve-train events (e.g. negative valve overlap), seems to be practical for many engine configurations and can be combined with any of the other HCCI enabling technologies. While this method has been widely researched, it is understood that the operating window of the HCCI engine with negative valve overlap is constrained, and the upper and lower load boundaries are greatly affected by the in-cylinder temperature.
Technical Paper

The Comparative Study of Gasoline and n-butanol on Spray Characteristics

2014-10-13
2014-01-2754
n-butanol has been recognized as a promising alternative fuel for gasoline and may potentially overcome the drawbacks of methanol and ethanol, e.g. higher energy density. In this paper, the spray characteristics of gasoline and n-butanol have been investigated using a high pressure direct injection injector. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to study the spray penetration and the droplet atomization process. The tests were carried out in a high pressure constant volume vessel over a range of injection pressure from 60 to 150 bar and ambient pressure from 1 to 5 bar. The results show that gasoline has a longer penetration length than that of n-butanol in most test conditions due to the relatively small density and viscosity of gasoline; n-butanol has larger SMD due to its higher viscosity. The increase in ambient pressure leads to the reduction in SMD by 42% for gasoline and by 37% for n-butanol.
Technical Paper

Study on an Electronically Controlled Common-Rail Injection System for Liquefied Alternative Fuels

2005-05-11
2005-01-2085
Liquefied alternative fuels offer great potential benefits in reducing exhaust emissions and improving fuel economy of automotive engines. In order to achieve the best performance of the engine running with such fuels, it is critical to have an appropriate fuel system. In the present work, a new electronically controlled common-rail injection system has been specially designed and tested for the direct injection of liquefied alternative fuels, since a conventional pump-line-injector injection system in the conventional diesel engine was not suitable for the purpose. Experimental work has been carried out to examine and improve matching of the fuel injection system on a new fuel injection pump test bench. The preliminary engine bench test has demonstrated that this arrangement meets the requirement for the operating characteristics of a fuel injection system in a direct injection diesel engine operating with dimethyl ether (DME).
Technical Paper

Study of Near Nozzle Spray Characteristics of Ethanol under Different Saturation Ratios

2016-10-17
2016-01-2189
Atomization of fuel sprays is a key factor in controlling the combustion quality in the direct-injection engines. In this present work, the effect of saturation ratio (Rs) on the near nozzle spray patterns of ethanol was investigated using an ultra-high speed imaging technique. The Rs range covered both flash-boiling and non-flash boiling regions. Ethanol was injected from a single-hole injector into an optically accessible constant volume chamber at a fixed injection pressure of 40 MPa with different fuel temperatures and back pressures. High-speed imaging was performed using an ultrahigh speed camera (1 million fps) coupled with a long-distance microscope. Under non-flash boiling conditions, the effect of Rs on fuel development was small but observable. Clear fuel collision can be observed at Rs=1.5 and 1.0. Under the flash boiling conditions, near-nozzle spray patterns were significant different from the non-flash boiling ones.
Journal Article

Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer

2010-05-05
2010-01-1505
2,5-dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. In this paper, the spray characteristics of DMF and its blends with gasoline were studied from a high pressure direct injection gasoline injector using the shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques, This includes the spray penetration, droplet velocity and size distribution of the various mixtures. In parallel commercial gasoline and ethanol were measured in order to compare the characteristics of DMF. A total of 52 points were measured along the spray so that the experimental results could be used for subsequent numerical modeling. In summary, the experimental results showed that DMF and its blends have similar spray properties to gasoline, compared to ethanol. The droplet size of DMF is generally smaller than ethanol and decreases faster with the increase of injection pressure.
Technical Paper

Split-Injection Strategies under Full-Load Using DMF, A New Biofuel Candidate, Compared to Ethanol in a GDI Engine

2012-04-16
2012-01-0403
It is well known that direct injection (DI) is a technology enabler for stratified combustion in spark-ignition (SI) engines. At full load or wide-open throttle (WOT), partial charge stratification can suppress knock, enabling greater spark advance and increased torque. Such split-injection or double-pulse injection strategies are employed when using gasoline in DI (GDI). However, as the use of biofuels is set to increase, is this mode still beneficial? In the current study, the authors attempt to answer this question using two gasoline-alternative biofuels: firstly, ethanol; the widely used gasoline-alternative biofuel and secondly, 2,5-dimethylfuran (DMF); the new biofuel candidate. These results have been benchmarked against gasoline in a single-cylinder, spray-guided DISI research engine at WOT (λ = 1 and 1500 rpm). Firstly, single-pulse start of injection (SOI) timing sweeps were conducted with each fuel to find the highest volumetric efficiency and IMEP.
Technical Paper

Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend

2006-04-03
2006-01-1362
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
Technical Paper

Research of the Atkinson Cycle in the Spark Ignition Engine

2012-04-16
2012-01-0390
In the automotive industry, engine downsizing has been widely accepted as an enabler to improving the fuel economy and reducing the CO₂ emissions. The Atkinson cycle is one of the key technologies. In this paper, the Atkinson cycle with different expansion ratios are compared and analyzed. The investigation is compared with the benchmark whose expansion and compression ratio are identical. The aim is to understand the inherent characteristics of the over-expansion and its effect on the engine performance and emissions. The simulation results show that, the Atkinson cycle produces higher efficiency due to over-expansion. The Atkinson cycle has higher internal EGR compared with the benchmark at equivalent conditions, which contributes to lower the NOx and CO emissions.
Technical Paper

Promotive Effect of Diesel Fuel on Gasoline HCCI Engine Operated with Negative Valve Overlap (NVO)

2006-04-03
2006-01-0633
It is well-known that gasoline is a poor fuel for HCCI operation due to its high autoignation temperature, while the major problem for diesel HCCI is that the ignition temperature of diesel fuel is too low so that diesel autoignites too early. Interestingly a blend of gasoline and diesel fuel could have desirable characteristics for HCCI operation. The negative valve overlap (NVO) is a practical and feasible control mode for production applications of the HCCI concept. At present, the most serious problem is the difficulty to control the moment of auto-ignition and extend the limited operating window of smooth HCCI operation. In this paper, the promotive effects of diesel fuel on gasoline HCCI combustion were experimentally examined. The diesel fuel as additive was added in advance in different proportion (10% and 20% by mass) into gasoline for the purpose of improving its ignitability. The experiments conducted on a gasoline HCCI engine which was naturally aspirated and unthrottled.
Technical Paper

Phenomenology of EGR in a Light Duty Diesel Engine Fuelled with Hydrogenated Vegetable Oil (HVO), Used Vegetable Oil Methyl Ester (UVOME) and Their Blends

2013-04-08
2013-01-1688
HVO contains paraffin only and UVOME is methyl ester with long chain alkyl while mineral diesel is complex compound and contains lots of aromatic and Naphthenic. This paper compares the effects of EGR on the two different types of biodiesels blends compared to diesel. The combustion performance and emissions of biodiesel blends of UVOME and HVO were investigated in a turbocharged direct injection V6 diesel engine with EGR swept from 0% to the calibration setting for diesel. The EGR sweep tests with increment of 5% were conducted at the engine speed of 1500 RPM for the load of between 72 Nm to 143 Nm, using sulfur-free diesel blended with UVOME and HVO at 30% and 60% by volume respectively. As the EGR rate was increased, the brake specific fuel consumption (BSFC) for each fuel was reduced at lower load but increased at higher load. The BSFC of mineral diesel was lower than UVOME blends and similar to the HVO blends.
Technical Paper

Optimisation of Injection Strategy, Combustion Characteristics and Emissions for IC Engines Using Advanced Simulation Technologies

2011-01-19
2011-26-0080
Regulations concerning emissions from diesel- and gasoline-fuelled engines are becoming ever more stringent in all parts of the world. Historically these targets have been achieved through on-going technological development using an iterative process of computational modeling, design, build and test. Computational modeling is certainly the cheapest aspect within this process and if employed to meet more of the challenges associated with development, has the potential to significantly reduce developmental cost and time scales. Furthermore, computational models are an effective means to retain and apply often highly focused technical knowledge of complex processes within development teams thus delivering greater insight into processes.
Technical Paper

Modelling of HCCI Engines: Comparison of Single-zone, Multi-zone and Test Data

2005-05-11
2005-01-2123
This paper presents a modeling study of a gasoline HCCI engine using a single-zone and a multi-zone engine combustion models coupled with the CHEMKIN chemical kinetics solver for the closed part of the cycle. These combustion models are subsequently combined with a 1-D gas dynamics engine cycle simulation code which calculates the engine gas exchange to supply the boundary conditions for the in-cylinder simulation and also predicts engine performance. The simulated in-cylinder pressure history and charge composition at the time of exhaust valve opening are compared with the data from a parallel engine experimental project. Although the single-zone model is useful for parameter studies by predicting the trend of auto-ignition timing variations as the result of the effect of engine operating conditions, the matching of simulated and test data is good perhaps only if the mixture and temperature distributions in the cylinder are uniform.
Technical Paper

Modelling Study of Combustion and Gas Exchange in a HCCI (CAI) Engine

2002-03-04
2002-01-0114
The main obstacle for the development of Homogeneous Charge Compression Ignition (HCCI) engines is the control of auto-ignition timing, and one key is to control the trapped gas temperature so as to enable the autoignition at the end of compression stroke. Using special valve mechanisms, very high residual gas mass fraction can be achieved to raise the charge temperature. Gas exchange process hence plays a crucial role in such HCCI engines because of its strong interaction with combustion. The modification of the gas exchange process in a 4-stroke automotive engine for HCCI combustion is not straightforward, since the engine must be able to operate across a considerably wide range of speeds and loads. Intake air temperatures and the valve mechanism need to be controlled in order to deliver optimal engine performance and fuel economy. This paper presents a modelling study of the combustion and gas exchange in a HCCI engine.
Technical Paper

Investigation on the Performance of Diesel Oxidation Catalyst during Cold Start at L ow Temperature Conditions

2014-10-13
2014-01-2712
Cold start is a critical operating condition for diesel engines because of the pollutant emissions produced by the unstable combustion and non-performance of after-treatment at lower temperatures. In this research investigation, a light-duty turbocharged diesel engine equipped with a common rail injection system was tested on a transient engine testing bed to study the starting process in terms of engine performance and emissions. The engine (including engine coolant, engine oil and fuel) was soaked in a cold cell at −7°C for at least 8 hours before starting the test. The engine operating parameters such as engine speed, air/fuel ratio, and EGR rate were recorded during the tests. Pollutant emissions (Hydrocarbon (HC), NOx, and particles both in mode of nucleation and accumulation) were measured before and after the Diesel Oxidation Catalyst (DOC). The results show that conversion efficiency of NOx was higher during acceleration period at −7°C start than the case of 20°C start.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Technical Paper

In-Cylinder Optical Study on Combustion of DMF and DMF Fuel Blends

2012-04-16
2012-01-1235
The bio-fuel, 2,5 - dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. However, little is known about the flame behavior in an optical engine. In this paper, high speed imaging (with intensifier) was used during the combustion of DMF and its blends with gasoline and ethanol (D50, D85, E50D50 and E85D15) in an SI optical engine. The flame images from the combustion of each fuel were analyzed at two engine loads: 3bar and 4bar IMEP. For DMF, D50 and E50D50, two modes were compared: DI and PFI. The average flame shapes (in 2D) and the average flame speeds were calculated and combined with mass fraction burned (MFB) data. The results show that when using DMF, the rate of flame growth development and flame speed is higher than when using gasoline. The differences in flame speed between DMF and gasoline is about 10% to 14% at low IMEP.
Technical Paper

Impacts of Low-Level 2-Methylfuran Content in Gasoline on DISI Engine Combustion Behavior and Emissions

2013-04-08
2013-01-1317
Research studies show that 2-methylfuran (MF) is a promising gasoline alternative regarding its positive effect on engine performance and emissions. Before using pure MF in spark ignition engines, it is more likely to be used in a low-level blended form in gasoline. An experimental research study was carried out to investigate the impacts of low-level MF content in gasoline (volumetric 10% MF in blend) on direct-injection spark-ignition (DISI) engine combustion behavior and emissions. The tests were conducted on a single-cylinder spray-guided DISI research engine at an engine speed of 1500 rpm under stoichiometric conditions. The engine loads of 3.5 ~ 8.5 bar IMEP were tested and gasoline-optimized spark timing was used. Furthermore, the effects of spark timing, exhaust gas recirculation (EGR) and valve overlap on NOx emissions were tested.
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
X