Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Injection, Atomization and Combustion of Carbon Slurry Fuels

1982-02-01
821199
Three different carbon blacks were used to formulate nine different slurries in DF-2. The rheological properties of each formulation were examined to determine deviations from Newtonian behavior. The spray characteristics of selected formulations were then examined in a high-pressure, high-temperature injection bomb. The cone angle decreased and the penetration rates increased for all of the slurries tested as compared to straight DF-2. These changes were more pronounced as the concentration of carbon black increased. Six formulations of three types of carbon black were tested in a single-cylinder, direct-injection CLR engine. Apparent heat release rates were computed as a function of crankangle from the cylinder pressure data. Based on the engine performance tests and some limited durability testing it appears that well-formulated carbon black slurries have only minor effects on engine performance and durability.
Technical Paper

Improved Atomization of Methanol for Low-Temperature Starting in Spark-Ignition Engines

1992-02-01
920592
Heating neat (100 percent) methanol fuel (M100) is shown to improve dramatically the atomization of the fuel from a production, automotive, port fuel injector of pintle design. This improvement is particularly noticeable and important when compared with atomization at low fuel temperatures, corresponding to those conditions where cold-start is a significant problem with neat methanol-fueled (M100) vehicles. The improved atomization is demonstrated with photographs and laser-diffraction measurements of the drop-size distributions. Fuel temperatures were varied from -34°C (-29°F to 117°C (243°F), while the boiling point of methanol is 64.7°C (148.5°F). Air temperatures were ambient at about 24°C (75°F). For temperatures above the boiling point, some flash boiling and vaporization were presumably occurring, and these may have contributed to the atomization, but the trends for drop size did not shown any discontinuity near the boiling point.
Technical Paper

Estimates of Fuel Evaporation: Bench Experiments and In-Cylinder

1995-02-01
950446
A relatively simple, commercially available, PC-based, dilute-spray model called TESS (Trajectory and Evaporation of Spray Systems) has been used to estimate methanol evaporation rates and drop-size evolution in bench experiments, and compared with measurements by McDonell and Samuelsen(1). Using measured initial conditions, the TESS model correlates well with the drop-size evolution for instruments using both number-flux-weighted sampling and number-density-weighted sampling, except close to the atomizer where the dilute spray assumptions do not apply. The amount of fuel evaporated at 100 mm from the atomizer is over-predicted (as expected for a dilute spray model) by 29 percent, but is within the experimental measurement error. The model is then used to estimate ethanol spray behavior in an intake manifold of a spark-ignition engine during cold-start.
Technical Paper

Emissions Solutions for 2007 and 2010 Heavy-Duty Diesel Engines

2004-03-08
2004-01-0124
Manufacturers of heavy-duty diesel engines for sale in the United States face an unprecedented reduction in emissions in 2007 and in 2010. Compared to today's levels, a 90% reduction in particulate matter (PM) must be achieved by 2007, and a 90% reduction in nitric oxides (NOx) must be achieved by 2010. This paper focuses on the technology solutions possible for engine makers for the interim 2007-2009 timeframe and discusses the additional NOx reduction strategies for a 2010 compliant engine. The possibility of achieving a larger portion of the interim 2007-2009 NOx standard through in-cylinder control methods rather than by NOx exhaust treatment is discussed. High levels of exhaust gas recirculation (EGR) and advanced injection strategies to modify the conventional diesel combustion process are just two processes that can be accommodated in many of today's engine designs.
X