Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

The Cold Flow Performance and the Combustion Characteristics with Ethanol Blended Biodiesel Fuel

2005-10-24
2005-01-3707
The purpose of this study is to improve low-temperature flow-properties of biodiesel fuels (BDF) by blending with ethanol and to analyze the combustion characteristics in a diesel engine fueled with BDF/ethanol blended fuel. Because ethanol has a lower solidifying temperature, higher oxygen content, lower cetane number, and higher volatility than BDF, ethanol blending would have a large effect on cold flow performance, mixture formation, ignition, combustion, and exhaust emissions. The engine experiments in the study were performed with a diesel engine and blends of BDF and ethanol at different blending ratios. The cold flow performance of the blended fuels was evaluated by determining the fuel cloud point. The experimental results show that the ethanol blending lowers the cloud point of the blended fuel and significantly reduces smoke emissions from the engine without deteriorating other emissions or thermal efficiency.
Technical Paper

Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission - Performance and Vehicle Tests

2006-04-03
2006-01-0865
The prototype solid particle counting system (SPCS) has been used to study solid particle emission from gasoline and diesel vehicles. As recommended by the PMP draft proposal, exhaust is diluted by a Constant Volume Sampler (CVS). The SPCS takes the sample from the CVS tunnel. Transient test cycles such as EPA FTP 75, EPA HWFET (EPA Highway Fuel Economy Cycle), and NEDC (New European Driving Cycle) were tested. The repeatability of the instrument was evaluated on the diesel vehicle for three continuous days. The instrument exhibits good repeatability. The differences for the EPA ftp 75, the EPA HWFET, and the NEDC in three continuous tests are ± 3.5%. The instrument is very sensitive as well and detects the driving differences. A large number of solid particles are found during the hard acceleration from both the gasoline and the diesel vehicles. Solid particle emissions decrease quickly at deceleration and when vehicles approach constant speed.
Technical Paper

Performance and Emission Characteristics of a DI Diesel Engine Operated on Dimethyl Ether Applying EGR with Supercharging

2000-06-19
2000-01-1809
This research investigates engine performance and the possibility of reducing exhaust emissions by using Dimethyl Ether (DME). There are high expectations for DME as a new alternative fuel for diesel engines for heavy-duty vehicles. In this experiment, a single cylinder direct-injection diesel engine with displacement of 1.05 liter and a compression ratio of 18:1 was used as a base engine. Common rail type DME fuel injection equipment for the single cylinder engine experiment was installed, and direct injection in the cylinder of DME was tried. Results indicated that high injection pressure, high swirl ratio, and supercharging using multi-hole injectors are effective for combustion promotion in the DME fueled diesel engine (DME engine). The output of the DME engine using supercharging with an intercooler and EGR was higher than that of a diesel engine. By increasing the EGR rate Nox emission was reduced to about 1/3 that of the diesel engine. Smoke was not completely emitted.
Technical Paper

PERFORMANCE IMPROVEMENT IN DIRECT METHANOL FUEL CELL BY USING A NOVEL POROUS FLOW FIELD MADE OF SINTERED METAL POWDER

2011-05-17
2011-39-7261
It is important to reduce the diffusion polarization for achieving higher performance in direct methanol fuel cells (DMFC). The previous research has shown the performance improvement by applying a metal foam type porous stainless steel made by a metal-plating method to the separator flow field of a DMFC. This porous flow field enabled DMFC to operate with higher power output than conventional straight groove type separator especially at higher current densities. Diffusion polarization was especially reduced by the porous flow field. This current paper experimentally analyzes the effect of a new type porous flow field that is made of a sintered spherical metal powder. The results show that the sintered metal powder flow field exhibits higher effect in performance improvement of DMFC than the metal foam type porous flow field used in the previous research.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Next-Generation Environmentally Friendly Vehicles Development and Commercialization Project (3rd Stage) in Japan

2013-03-10
2012-01-2085
As alternatives to heavy-duty vehicles, this project seeks to promote the development of Next-Generation EFVs, which will present a solution to the severe air pollution problem particularly in big cities, and drastically improve exhaust gas emissions and reduce carbon dioxide emissions in order to lessen the contribution to global warming. Ministry of Land, Infrastructure, Transport and Tourism (MLIT) started the Next-Generation Environmentally Friendly Vehicles Development and Commercialization Project in 2002. MLIT at that time entrusted this project to National Traffic Safety and Environment Laboratory (NTSEL). NTSEL as a core research organization organized a cooperative system with automobile manufacturers, suppliers, universities, academic experts, that is to say, “industry-academic-government” and launched the development activities.
Technical Paper

Mechanisms in Reducing Smoke and NOx from BDF Combustion by Ethanol Blending and EGR

2007-04-16
2007-01-0622
Palm oil has the important advantage of productivity compared to other vegetable oils such as rapeseed oil and soybean oil. However, the cold flow performance of palm oil methyl ester (PME) is poorer than other vegetable oil based biodiesel fuels. Previous research by the authors has shown that ethanol blending into PME improves the cold flow performance and considerably reduces smoke emission. The reduced smoke may be expected to allow an expansion in the EGR limit and lead to reduced NOx. This paper experimentally analyses the influence of EGR on smoke and NOx emissions from the diesel combustion with PME/ethanol blended fuel. The mechanisms in the smoke reduction are also analyzed.
Technical Paper

Influence of Reformed Gas Composition on HCCI Combustion of Onboard Methanol-Reformed Gases

2004-06-08
2004-01-1908
Adjusting the proportion of two fuels with different ignition properties is an effective technique for controlling ignition timing in homogeneous charge compression ignition (HCCI) combustion. One of the authors has proposed an HCCI combustion engine system fueled with dimethyl ether (DME) with a high cetane number and methanol reformed gas (MRG) with a high anti-knock property in the previous research. Both DME and MRG are to be produced from methanol by onboard reformers utilizing the exhaust heat from the engine in the system. The research has shown that adjusting the proportion of DME and MRG effectively controlled the ignition timing and load in HCCI combustion of the two fuels. High overall thermal efficiency has been shown over a wide operable range. While the MRG used in the research was the thermally decomposed methanol, which consists of hydrogen and carbon monoxide, methanol can be reformed into various compositions of hydrogen, carbon monoxide and carbon dioxide.
Technical Paper

Influence of Carbon Dioxide on Combustion in an HCCI Engine with the Ignition-Control by Hydrogen

2006-10-16
2006-01-3248
A homogeneous-charge compression-ignition (HCCI) engine system that was fuelled with dimethyl ether (DME) and methanol-reformed gas (MRG) has been proposed in the previous research. Adjusting the proportion of DME and MRG can effectively control the ignition timing of the engine. In the system, both fuels are to be produced from methanol in onboard reformers utilizing the engine exhaust gas heat. While hydrogen contained in MRG has the main role of the ignition control, hydrogen increases with carbon dioxide in the methanol reforming. This paper investigates the influence of carbon dioxide on HCCI combustion engine with the ignition control by hydrogen. Both thermal and chemical effects of carbon dioxide are analyzed.
Technical Paper

HCCI Combustion of Hydrogen, Carbon Monoxide and Dimethyl Ether

2002-03-04
2002-01-0112
Homogeneous charge compression ignition (HCCI) combustion enables higher thermal efficiency and lower NOx emission to be achieved in internal combustion engines when compared with conventional combustion systems. Control of proportion of high cetane number and low cetane number fuels is an effective technique for controlling ignition timing and load in HCCI combustion. The aim of this paper is to analyze the characteristics of the HCCI combustion of hydrogen, carbon monoxide and dimethyl ether (DME) in a single cylinder engine. A mixture of hydrogen and carbon monoxide with a composition of 67% hydrogen and 33% carbon monoxide called methanol-reformed gas (MRG) was used as the low cetane number fuel and DME as the high cetane number fuel. Both MRG and DME can be reformed from methanol in endothermic reactions. The endothermic reactions make waste heat recovery in fuel reforming possible by using the heat from the exhaust gases.
Technical Paper

Exhaust Emission Characteristics of Commercial Vehicles Fuelled with Biodiesel

2010-10-25
2010-01-2276
The application of biodiesel as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO₂ emission, because biodiesel is produced from renewable biomass resources. In Japan, neat biodiesel derived from waste cooking oil has often been applied to commercial vehicles. However, it is possible that the difference of fuel properties between conventional diesel fuel and biodiesel causes the problems on exhaust emission characteristics of diesel engine. Therefore, it is necessary to clarify the effect of biodiesel fuelling on exhaust emissions from commercial vehicles. Light-duty garbage trucks and heavy-duty diesel buses which were actually fueled with biodiesel in Kyoto, Japan, were used for test vehicles in this study. The exhaust emissions from these vehicles during JE05 mode tests were compared between biodiesel derived from waste cooking oil and conventional diesel fuel.
Technical Paper

Efficiency Analysis in a Direct Methanol Fuel Cell with a Measurement of Methanol Concentration

2001-03-05
2001-01-0237
Methanol has many advantages as a fuel for fuel cells compared with hydrogen. The direct methanol type system consists of simple and compact equipment, and suited for automobile use. This research analyzed characteristics of power output and thermal efficiency in a direct methanol fuel cell. The measuring system for low concentration methanol in a water solution using the non-dispersive infrared (NDIR) was developed. Influences of electrolyte membrane thickness, cell temperature, and methanol solution concentration on power output and thermal efficiency were analyze.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine

2008-10-06
2008-01-2384
The use of biodiesel fuels as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO2 emission, because biodiesel is produced from renewable biomass resources. Biodiesel is usually blended to conventional diesel fuel in various proportions. It is possible that this biodiesel blending causes the problems on emission characteristics of modern diesel engine, because it could be confirmed that the application of neat biodiesel to modern diesel engines whose control parameters were optimized for conventional diesel fuel deteriorated the emission performances. It is necessary to clarify the effect of biodiesel blending on exhaust emissions of modern diesel engine. Rapeseed oil methyl ester (RME) was selected as a biodiesel used in this study.
Technical Paper

EFFICIENT PRODUCTION OF HYDROGEN FROM AQUEOUS METHANOL IN A PEM ELECTROLYSER WITH SINTERED METAL POWDER POROUS FLOW FIELDS

2011-05-17
2011-39-7262
This paper presents the studies carried out on electrolysis of aqueous methanol for hydrogen production in a proton exchange membrane electrolyser with a novel porous flow field made of sintered metal powder. Results show that the use of porous flow field has a significant improvement in hydrogen production performance compared to a groove flow field. This could be attributed to an increase in effective electrode area and to a reduction in diffusion polarization by using the porous material which enables the flow field to supply reactants evenly to the electrode and also removes carbon dioxide smoothly. Influences of the operating conditions such as methanol concentration and cell temperature on hydrogen production are also discussed.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Development of 3.5L V6 Gasoline Direct Injection Engine - ESTEC 2GR-FKS/FXS -

2015-09-01
2015-01-1972
The new 2GR-FKS / FXS engines were developed to achieve stringent fuel economy and emission targets and respond to recent innovations in the field. The major parts of the 2GR-FKS/FXS engines were re-designed based on the well-received dynamic performance and fuel economy aspects of the 2GR-FE engine. The aims of this development were as follows. 1 Best-in-class power performance 2 Environmental performance that maximizes thermal efficiency and complies with fuel economy and emission regulations in each country by a wide margin 3 Engine response typical of V6 engines through drastic weight reduction of moving parts To achieve these conflicting aims, the developed engines use a modified version of the D-4S fuel injection system, which enables selective use of direct and port injection, in addition to advanced technologies such as variable valve technology (VVT) with a mid-position lock system and an exhaust port cooling system.
Technical Paper

Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines

2006-10-16
2006-01-3299
Autoignition in the homogeneous charge compression ignition (HCCI) process typically exhibits heat release in two stages called cool flame and thermal flame. The mechanisms governing these two stages were investigated using a DME-fueled HCCI engine and numerical simulations. Composition analysis after cool flame showed that the cool flame is explained by a chain reaction mechanism in which the chain terminator is the intermediate species formed in cool flame. In the case of thermal flame, although the chain reaction mechanism is complex, the behavior is clearly described by thermal explosion theory in which the rate-determining reaction is H2O2 decomposition.
Technical Paper

Analysis of Degree of Constant Volume and Cooling Loss in a Hydrogen Fuelled SI Engine

2001-09-24
2001-01-3561
This study analyzes the factors influencing the thermal efficiency of a homogeneous charge spark-injection (SI) engine fuelled with hydrogen, focusing on the degree of constant volume and cooling loss. The cooling loss from the burning gas to the cylinder walls is quantitatively evaluated by analyzing the cylinder pressure diagram and exhaust gas composition. The degree of constant volume burning and constant volume cooling are also obtained by fitting the Wiebe function to the rate of heat release calculated using the cylinder pressure diagram. A comparison of combustion and cooling characteristics of hydrogen and methane combustion reveals that cooling loss in hydrogen combustion is higher than that of methane combustion due to the short quenching distance and rapid burning velocity during hydrogen combustion. It is also suggested that the high cooling loss observed during hydrogen combustion reduces thermal efficiency.
X