Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Torque Control of a Small Gasoline Engine with a Variable Nozzle Turbine Turbocharger

2009-11-03
2009-32-0169
The ideal torque curve of automotive engines should be high and flat from low engine speed. To achieve this, we installed a variable nozzle turbine (VNT) turbocharger to a retail natural aspirated (NA) small gasoline engine. In the VNT turbocharger, variable vanes are set around the turbine wheel and form nozzles that changed the flow velocity of the exhaust gas. The vane position was controlled to adjust intake pressure at a target. As a result, the maximum torque improved by 27% and the engine speed at maximum torque was lowered by 1550rpm. A flat torque curve was achieved from 5450rpm to 8000rpm.
Technical Paper

Practical Method of Hydrogen Diffusion Simulation for Fuel Cell Electric Vehicle Development

2012-04-16
2012-01-1231
Research was conducted on a method for the simulation of the diffusion of pressurized hydrogen leaking at high speed from a small opening into the complexly shaped space of a fuel cell electric vehicle with a practicable calculation time. The fact that the scale of the calculations was large and the calculation time was therefore extended represented issues in relation to this simulation method. The reduction of calculation time through the use of a three part partitioning method was proposed in order to resolve this issue. In this method, the calculation region is divided into three: In the first part, steady-state compressible flow calculations are conducted for the region close to the hydrogen outlet where the Mach number is higher than 0.5.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Feed-Back Control of Ignition Timing Using Peak Cylinder Pressure Angle with Rough Timing Table

2011-11-08
2011-32-0578
Cylinder pressure is used for the closed-loop ignition angle control of a gasoline engine. This paper focused on the crank angle position where the maximum cylinder pressure reached (θPmax) and the relationship between the θPmax and the ignition angle. This closed-loop control set the θPmax a target value with an initial ignition angle and does not need a detailed ignition angle map. Response time and deflection with the target value are examined with a test bench. The θPmax target, ATDC 18 deg. is confirmed in consideration of the effect of knocking and the exhaust gas composition. The target ignition angle was varied step by step within a limit of upper and lower values, the response was observed and each gain was decided. At the engine speed of 5000 rpm, the duration to reach a steady value of θPmax is 0.10 s and the response time of ignition angle is 0.02 s.
Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Journal Article

Diesel Engine Combustion Noise Reduction by the Control of Timings and Heating Values in Two Stage High Temperature Heat Releases

2016-04-05
2016-01-0731
Reductions in combustion noise are necessary in high load diesel engine operation and multiple fuel injections can achieve this with the resulting reductions in the maximum rate of pressure rise. In 2014, Dr. Fuyuto reported the phenomenon that the combustion noise produced in the first combustion can be reduced by the combustion noise of the second fuel injection, and this has been named “Noise Cancelling Spike Combustion (NCS combustion)”. To investigate more details of NCS combustion, the effects of timings and heating values of the first and second heat releases on the reduction of overall combustion noise are investigated in this paper. The engine employed in the research here is a supercharged, single cylinder DI diesel engine with a high pressure common rail fuel injection system.
Technical Paper

Classification of the Reactivity of Alkylperoxy Radicals by Using a Steady-State Analysis

2015-09-01
2015-01-1811
To execute the computational fluid dynamics coupling with fuel chemistry in internal combustion engines, simplified chemical kinetic models which capture the low-temperature oxidation kinetics would be required. A steady-state analysis was applied to see the complicated reaction mechanism of alkylperoxy radicals by assuming the steady state for hydroperoxyalkyl (QOOH) and hydroperoxyalkylperoxy (OOQOOH) radicals. This analysis clearly shows the systematic trend of the reaction rate for the chain-branching and non-branching process of alkylperoxy (ROO) radicals as a function of the chain length and the carbon class. These trends make it possible to classify alkylperoxy radicals by their chemical structures, and suggest a reduced low-temperature oxidation chemistry.
X