Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Simulation of High Efficiency Heavy Duty SI Engines Using Direct Injection of Alcohol for Knock Avoidance

2008-10-06
2008-01-2447
The use of direct injection (DI) of a second fuel, ethanol or methanol (or their concentrated blends), is explored, via simulation, as a means of avoiding knock in turbocharged, high compression ratio spark-ignited engines that could replace diesels in certain vocational applications. The Ethanol Turbo Boost ™ concept uses the second fuel only under conditions of high torque to avoid knock, while using only conventional gasoline throughout the rest of the engine operating range. This approach is an attractive alternative for heavy duty vehicles that operate intermittently at high torque and within a confined locale, reducing the logistical issues of supplying the knock-suppressing fuel. The combination of GT-Power for engine calculations and a sophisticated chemical kinetics code for predicting knock were used in the study.
Journal Article

Optimal Use of Ethanol in Dual Fuel Applications: Effects of Engine Downsizing, Spark Retard, and Compression Ratio on Fuel Economy

2016-04-05
2016-01-0786
Turbocharging, increasing the compression ratio, and downsizing a spark-ignition engine are well known strategies for improving vehicle fuel economy. However, such strategies increase the likelihood of engine knock due to higher in-cylinder pressures and temperatures. A high octane fuel, such as E85, effectively suppresses knock but is not necessary in most parts of the engine operating map. To better utilize a high octane fuel, dual fuel injection has been suggested where high octane fuel is injected only when the engine is about to knock. However, the effects of downsizing, retarding spark timing, and increasing compression ratio on dual fuel applications are not well understood. To investigate these questions, GT-power simulations along with engine experiments and engine-in-vehicle simulations for a passenger vehicle and a medium-duty truck were conducted.
Technical Paper

Octane Requirement of a Turbocharged Spark Ignition Engine in Various Driving Cycles

2016-04-05
2016-01-0831
High octane fuel (e.g., E85) effectively suppresses knock, but the octane ratings of such fuels are much above what is required under normal driving conditions. It is important, therefore, to understand the octane requirement of the engine itself over its full range of operation and apply that knowledge to practical driving cycles to understand fuel octane utilization, especially of a turbocharged engine. By carefully defining knock limits, the octane requirement of a 2-liter turbocharged spark ignition engine was experimentally quantified over a wide range of loads and speeds using PRF blends and gasoline-ethanol blends. Utilizing this knowledge and engine-in-vehicle simulations, the octane requirements of various driving cycles were calculated for a passenger car and a medium duty truck model.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
X