Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Aerodynamic Optimization of Vehicle Configuration Based on Adjoint Method

2020-04-14
2020-01-0915
Due to the increasingly stringent environmental regulations all around the world confronted by exhaust emission and energy consumption, improving fuel economy has been the top priority for most automotive manufacturers. In this context, the basic process for vehicle shape development has evolved into optimizing the design to achieve better aerodynamic characteristics, especially drag reduction. Of all the optimization approaches, the gradient-based adjoint method has currently received extensive attention for its high efficiency in calculating the objective sensitivity with respect to geometry parameters, which is the first and foremost step for subsequent shape modification. In this work, the main goal is to explore the adjoint method through optimizing the vehicle shape for a lower drag based on a production SUV. Firstly, the influence of different mesh schemes was discussed on sensitivity prediction of aerodynamic drag.
Technical Paper

An Eulerian Approach with Mesh Adaptation for Highly Accurate 3D Droplet Dynamics Simulations

2019-06-10
2019-01-2012
Two main approaches are available when studying droplet dynamics for in-flight icing simulations: the Lagrangian approach, in which each droplet trajectory is integrated until it impacts the vehicle under study or when it leaves it behind without impact, and the Eulerian approach, where the droplet dynamics is solved as a continuum. In both cases, the same momentum equations are solved. Each approach has its advantages. In 2D, the Lagrangian approach is easy to code and it is very efficient, particularly when used in combination with a panel method flow solver. However, it is a far less practical approach for 3D simulations, particularly on complex geometries, as it is not an easy task to accurately determine the droplet seeding region without a great number of droplet trajectories, dramatically increasing the computing cost. Converting the impact locations into a water collection distribution is also a complex task, since droplet trajectories in 3D can follow convoluted paths.
Journal Article

An Investigation of CutCell Meshing Strategies for Accurate Aerodynamic Performance Prediction

2012-04-16
2012-01-0499
With advances in computing power and Computational Fluid Dynamics (CFD) algorithms, the complexity of CutCell based simulation models has significantly increased. In this study three dimensional numerical simulations were created for steady incompressible flow around airfoil shape. The NACA-0012 airfoil was used for this study. Boundary layer thickness, mesh expansion ratio, and mesh density variation parameters were investigated. Drag and lift coefficients were compared to experimental data. Use of the CutCell method results in a good agreement between CFD results and experimental data.
Technical Paper

Automation of Vehicle Aerodynamic Shape Exploration and Optimization using Integrated Mesh Morphing and CFD

2011-04-12
2011-01-0170
Thorough design exploration is essential for improving vehicle performance in various aspects such as aerodynamic drag. Shape optimization algorithms in combination with computational tools such as Computational Fluid Dynamics (CFD) play an important role in design exploration. The present work describes a Free-Form Deformation (FFD) approach implemented within a general purpose CFD code for parameterization and modification of the aerodynamic shape of real-life vehicle models. Various vehicle shape parameters are constructed and utilized to change the shape of a vehicle using a mesh morphing technique based on the FFD algorithm. Based on input and output parameters, a design of experiments (DOE) matrix is created. CFD simulations are run and a response surface is constructed to study the sensitivity of the output parameter (aerodynamic drag) to variations in each input parameter.
Journal Article

CFD-Based Shape Optimization for Optimal Aerodynamic Design

2012-04-16
2012-01-0507
Increased energy costs make optimal aerodynamic design even more critical today as even small improvements in aerodynamic performance can result in significant savings in fuel costs. Energy conscious industries like transportation (aviation and ground based) are particularly affected. There have been a number of different optimization methods, some of which require geometrically parameterized models. For non-parameterized models (as it is the case often in reality where models and shapes are very complex). Shape optimization and adjoin solvers are some of the latest approaches. In our study we are focusing on generating best practices and investigating different strategies of employing the commercially available shape optimizer tool from ANSYS'CFD solver Fluent. The shape optimizer is based on a polynomial mesh-morphing algorithm. The simple case of a low speed, airfoil/flap combination is used as a case study with the objective being the lift to drag ratio.
Technical Paper

Flow Simulations around a Generic Ground Transportation System: Using Immersed Boundary Method

2008-10-07
2008-01-2613
The purpose of present study is to use Immersed Boundary (IB) method in flow field simulations of a simplified generic ground transportation system (GTS) at 0° yaw. The IB method is usually employed in conjunction with a body non-conforming Cartesian grid. Thus, grid generation is greatly simplified. This plays an important role in reducing the cost and time in design process. This paper demonstrates the ease of use of IB method compared to body fitted mesh method and possible use of IB method to automate the external aerodynamics simulations. Also in order to assess the accuracy, the results are compared with corresponding experimental data reported in literature.
Technical Paper

IMPACT: Numerical Study of Aerodynamics of an Iced Forward-Swept Tail with Leading Edge Extension

2023-06-15
2023-01-1371
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing.
Technical Paper

Icing Simulation Results Using Lagrangian Particle Tracking in Ansys Fluent Icing

2023-06-15
2023-01-1478
This paper introduces the Lagrangian particle tracking technology readily available in Ansys Fluent in the in-flight icing simulation workflow, which normally uses the Eulerian approach for droplet flows. The Lagrangian solver is incorporated in the Fluent Icing workspace which is to become the next-gen in-flight icing simulation tool provided by Ansys. Lagrangian tracking will eventually be used for SLD and ice crystal rebound and re-impingement calculations in the Ansys workflow. Here we introduce some preliminary results with the current state of its implementation as of Fluent Icing release 2023R2. Example cases include several selections from the 1st Ice prediction workshop with experimental comparisons as well as results obtained earlier with the Eulerian droplet solution strategy. Collection efficiency comparisons on clean geometries show good agreement between Eulerian and Lagrangian methods when the particle seeds are in the millions range.
Technical Paper

Multi-Objective Aerodynamic Optimization of Vehicle Shape Using Adjoint Approach Based on Steady-State and Transient Flow Solutions

2021-04-06
2021-01-0945
In order to achieve the purpose of saving energy and reducing emission, the improvement of aerodynamic performance plays an increasingly crucial role for car manufacturers. Previous studies have confirmed the validity of gradient-based adjoint algorithm for its high efficiency in shape optimization. In this paper, two important aspects of adjoint approach were explored. One is vehicle aerodynamic optimization with multiple objectives, and the other is using time-averaged flow results as the primal solution, both are issues of high interest in recent applications. First, adjoint shape optimization with steady-state and time-averaged flow simulations were respectively calculated and comparatively discussed based on a production SUV. The shape modifications of the two cases indicated that the impact of primal solution on design change could not be neglected, due to the different intrinsic codes of steady and transient turbulence models.
Technical Paper

Numerical Demonstration of the Humidity Effect in Engine Icing

2019-06-10
2019-01-2015
The importance of the variation of relative humidity across turbomachinery engine components for in-flight icing is shown by numerical analysis. A species transport equation for vapor has been added to the existing CFD methodology for the simulation of ice growth and water flow on engine components that are subject to ice crystal icing. This entire system couples several partial differential equations that consider heat and mass transfer between droplets, crystals and air, adding the cooling of the air due to particle evaporation to the icing simulation, increasing the accuracy of the evaporative heat fluxes on wetted walls. Three validation cases are presented for the new methodology: the first one compares with the numerical results of droplets traveling inside an icing tunnel with an existing evaporation model proposed by the National Research Council of Canada (NRC).
Technical Paper

Numerical Modelling of Primary and Secondary Effects of SLD Impingement

2019-06-10
2019-01-2002
A CFD simulation methodology for the inclusion of the post-impact trajectories of splashing/bouncing Supercooled Large Droplets (SLDs) and film detachment is introduced and validated. Several scenarios are tested to demonstrate how different parameters affect the simulations. Including re-injecting droplet flows due to splashing/bouncing and film detachment has a significant effect on the accuracy of the validations shown in the article. Validation results demonstrate very good agreement with the experimental data. This approach is then applied to a full-scale twin-engine turboprop to compute water impingement on the wings and the empennage.
Technical Paper

Numerical Simulation of Aircraft and Variable-Pitch Propeller Icing with Explicit Coupling

2019-06-10
2019-01-1954
A 3D CFD methodology is presented to simulate ice build-up on propeller blades exposed to known icing conditions in flight, with automatic blade pitch variation at constant RPM to maintain the desired thrust. One blade of a six-blade propeller and a 70-passenger twin-engine turboprop are analyzed as stand-alone components in a multi-shot quasi-steady icing simulation. The thrust that must be generated by the propellers is obtained from the drag computed on the aircraft. The flight conditions are typical for a 70-passenger twin-engine turboprop in a holding pattern in Appendix C icing conditions: 190 kts at an altitude of 6,000 ft. The rotation rate remains constant at 850 rpm, a typical operating condition for this flight envelope.
Technical Paper

Numerical Simulation of Ice Crystal Accretion Inside an Engine Core Stator

2019-06-10
2019-01-2017
A CFD simulation methodology is presented to calculate blockage due to ice crystal icing of the IGV passages of a gas turbine engine. The computational domain consists of six components and includes the nacelle, the full bypass and the air induction section up to the second stage of the low-pressure compressor. The model is of a geared turbofan with a fan that rotates at 4,100 rpm and a low-pressure stage that rotates at 8,000 rpm. The flight conditions are based on a cruising speed of Mach 0.67 in Appendix-D icing conditions with an ice crystal content is 4.24 g/m3. Crystal bouncing, and re-entrainment is considered in the calculations, along with variable relative humidity and crystal melting due to warmer temperatures within the engine core. Total time of icing is set to 20 seconds. The CFD airflow and ice crystal simulations are performed on the full 6-stage domain. The initial icing calculation determines which stage will be chosen for a more comprehensive analysis.
Technical Paper

Numerical Study of Iced Swept-Wing Performance Degradation using RANS

2023-06-15
2023-01-1402
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million.
X