Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Comparison of Burn Characteristics and Exhaust Emissions from Off-Highway Engines Fueled by E0 and E85

2004-01-16
2004-28-0045
Ethanol fuel has received renewed attention in recent years because of its oxygenate content and its potential to reduce greenhouse gas emissions from spark ignition engines. The economic impact on farm industry has been one of the drivers for its use in engines in the U.S. Although ethanol, in various blends, has been used in automotive engines for almost a decade the fuel has seldom been utilized in off-highway engines where the fuel systems are not well controlled. This investigation was conducted to evaluate exhaust emissions and combustion characteristics of E85 fuel in an off-highway engine used in farm equipment. A single-cylinder, four-stroke, spark ignition engine equipped with a carburetor was used to investigate combustion and exhaust emissions produced by gasoline and blends of gasoline and ethanol fuels. The engine fuel system was modified to handle flow rates required by the engine. A variable size-metering orifice was used to control air-to-fuel ratios.
Technical Paper

Aerodynamic Optimization of Vehicle Configuration Based on Adjoint Method

2020-04-14
2020-01-0915
Due to the increasingly stringent environmental regulations all around the world confronted by exhaust emission and energy consumption, improving fuel economy has been the top priority for most automotive manufacturers. In this context, the basic process for vehicle shape development has evolved into optimizing the design to achieve better aerodynamic characteristics, especially drag reduction. Of all the optimization approaches, the gradient-based adjoint method has currently received extensive attention for its high efficiency in calculating the objective sensitivity with respect to geometry parameters, which is the first and foremost step for subsequent shape modification. In this work, the main goal is to explore the adjoint method through optimizing the vehicle shape for a lower drag based on a production SUV. Firstly, the influence of different mesh schemes was discussed on sensitivity prediction of aerodynamic drag.
Technical Paper

CFD Modelling of the Effects of Exhaust Gas Recirculation (EGR) and Injection Timing on Diesel Combustion and Emissions

2017-03-28
2017-01-0574
Emissions from Diesel engines have been a major concern for many years, particularly with regards to the impact of NOx and particulate matter on human health. Exhaust gas re-circulation (EGR) is a widely used method in diesel engines for controlling NOx production. While EGR rates can be varied to ensure engine performance and reduce NOx emissions, EGR also influences the ignition delay, reduces the peak combustion temperature and increases particulate emissions. Moreover, the injection timing directly affects NOx and particulate emissions under the broad and highly variable operating conditions. An effective CFD-based design tool for diesel engines must therefore include robust and accurate predictive capabilities for combustion and pollutant formation, to address the complex design tradeoffs. The objective of the present study is to evaluate CFD modeling of diesel engine combustion and emissions for various combinations of EGR rates and injection timings.
Technical Paper

Characteristics of High-Pressure Spray and Exhaust Emissions in a Single- Cylinder Di Diesel Engine

2000-06-12
2000-05-0333
Regulations on exhaust emissions from light- and heavy-duty diesel engines have generated interest in high-pressure fuel injection systems. It has been recognized that high-pressure injection systems produce fuel sprays that may be more conductive to reducing exhaust emissions in direct-injection diesel engines. However, for such a system to be effective it must be matched carefully with the engine design and its operating parameters. A common-rail type of fuel injection system was investigated in the present study. The injection system utilizes an intensifier to generate injection pressures as high as 160 MPa. The fuel spray characteristics were evaluated on a test bench in a chamber containing pressurized nitrogen gas. The injection system was then incorporated in a single-cylinder diesel engine. The injection system parameters were adjusted to match engine specifications and its operating parameters.
Technical Paper

Characterization of Exhaust Emissions in a SI Engine using E85 and Cooled EGR

2009-06-15
2009-01-1952
Gasoline-ethanol blends are being used or have been considered as a fuel for spark ignition engines. The motivation for using the blends varies in indifferent parts of the world and even in regions within a country. The increasing cost of gasoline, combined with regional tax incentives, is one of the reasons for increased interests in gasoline-ethanol blends in recent years in the U.S. Many vehicular engines are not designed to use a specific gasoline-ethanol blend. Rather, the engines have multi-blend capability, ranging from E0 to about E85. It is plausible that engine-out emissions will vary depending on the blend being used which may be further impacted by the level of EGR used with the blends. The present work was carried out to investigate engine out emissions when a vehicular spark-ignition engine was operated on E0 and E85 and different levels of EGR. A 4-cylinder, 2.5 liter, PFI engine was used in the experimental investigation.
Technical Paper

Combustion Variability in Natural Gas Fueled Engines

2003-05-19
2003-01-1935
A study was conducted to investigate combustion variability and exhaust emissions from high-speed, natural gas fueled engines. Two types of fuel systems were used in the investigation: a mixer and a port fuel injection. The overall engine performances were not much different at stoichiometric fuel-air ratio. But as the equivalence ratio was reduced the engine with the mixer produced higher levels of hydrocarbons and larger coefficient of variations in imep. The same engine exhibited longer flame development angle and rapid burn duration in comparison to the fuel injected engine. The differences in burn durations increased as the equivalence ratio decreased and the mixer system produced larger variations in their values at these operating points. The investigation showed the performance of the engine was better with natural gas injection system than with the mixer, particularly at lean equivalence ratios.
Technical Paper

Correlation between Sensor Performance, Autonomy Performance and Fuel-Efficiency in Semi-Truck Platoons

2021-04-06
2021-01-0064
Semi-trucks, specifically class-8 trucks, have recently become a platform of interest for autonomy systems. Platooning involves multiple trucks following each other in close proximity, with only the lead truck being manually driven and the rest being controlled autonomously. This approach to semi-truck autonomy is easily integrated on existing platforms, reduces delivery times, and reduces greenhouse gas emissions via fuel economy benefits. Level 1 SAE fuel studies were performed on class-8 trucks operating with the Auburn Cooperative Adaptive Cruise Control (CACC) system, and fuel savings up to 10-12% were seen. Enabling platooning autonomy required the use of radar, global positioning systems (GPS), and wireless vehicle-to-vehicle (V2V) communication. Poor measurements and state estimates can lead to incorrect or missing positioning data, which can lead to unnecessary dynamics and finally wasted fuel.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Emissions and Their Control in Natural Gas Fueled Engines

1992-10-01
922250
An experimental study was undertaken to investigate emissions of hydrocarbons, oxides of nitrogen, carbon monoxide, and methane hydrocarbons emitted by natural gas fueled engines and the extent of their conversion in catalysts. Two engines were used in the study: a four cylinder, 1.6 liter, spark ignition engine and a modified version of the same engine with only one of the cylinders operating at 0.4 liter capacity. Two-way and three-way catalysts were used to treat exhaust gases leaving the engine. Natural gas was supplied through gas carburetors operated at regulated pressures and supplying air-fuel ratios in the desired range. The results of the investigation showed that oxides of nitrogen could not be reduced in a three-way catalyst to the levels found in gasoline fueled engines when the operating air-fuel ratio was stoichiometric.
Technical Paper

Hydrogen-Diesel Engine: Problems and Prospects of Improving the Working Process

2019-04-02
2019-01-0541
The diesel engine with direct injection of hydrogen gas has clear advantages over the hydrogen engine with forced ignition of a hydrogen-air mixture. Despite of this, the concept of hydrogen-diesel engine has not investigated until now. In the paper, a detailed study of the working process of hydrogen-diesel engine carried out for the first time. Based on the results of the experimental studies and mathematical modeling, it has established that the behavior of thermo-physical processes in the combustion chamber of hydrogen-diesel engine, in a number of cases, differs fundamentally from the processes that take place in the conventional diesel engines. There have been identified the reasons for their difference and determined the values of the operating cycle parameters of hydrogen diesel engine, which provide the optimal correlation between the indicator values and the environmental performance.
Technical Paper

Impact of Aromatics on Engine Performance

2019-04-02
2019-01-0948
Aromatics constitute a significant portion of refinery fuels. Characterizing the impact of various aromatic components on combustion and emissions facilitates formulation of surrogate fuels for engine simulations. The impact of blending aromatics in fuel surrogates is usually nonlinear for ignition characteristics responsible for knocking in spark engines and for combustion phasing in diesel engines. In this work, we have characterized the behavior of nine aromatics components under engine-relevant conditions. A self-consistent and validated detailed kinetics mechanism has been developed for gasoline and diesel surrogates that contains toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, isomers of xylene, 1,2,4-trimethylbenzene, and 1-methylnaphthalene. Numerical experiments using 0-D and 1-D models have been performed to study the relative behavior of these aromatics for different reacting conditions.
Technical Paper

Lean Burn Natural Gas Fueled S.I.Engine and Exhaust Emissions

1995-10-01
952499
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in the engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads.
Technical Paper

Relationship Between the Corner Depth and Quality of Mixing in a Square Combustion Chamber Di Diesel Engine

2000-06-12
2000-05-0041
This paper provides an insight into the design of a compound combustion chamber, with square and circular cavities, for use in a direct-injection diesel engine. Automotive diesel engines using square combustion chamber design have shown improvement in oxides of nitrogen and particulate exhaust emissions. In spite of this, neither the quality of mixture formation in such chambers nor the relationship between the engine performance and combustion chamber designs have been adequately addressed. Compound combustion chambers have potential to combine attributes of square and circular chambers to provide improved engine performance. An experimental study, based on liquid injection technique (LIT), was conducted to evaluate mixture formation in compound combustion chambers of different designs. These chambers have square geometry of depth "h" at the top and a curricular cavity at the bottom, with the total chamber depth being "H."
Technical Paper

Validation Studies of a Detailed Soot Chemistry for Gasoline and Diesel Engines

2021-04-06
2021-01-0618
Accurately predicting the evolution of soot mass and soot particle numbers under engine conditions is critical to advanced engine design. A detailed soot-chemistry model that can capture soot under gasoline and diesel conditions without tuning is necessary for such predictions. Building confidence in the predictive usage of the chemistry in engine simulations requires validating the soot kinetics over a wide range of operating conditions and fuels, using data from different experimental techniques, and using sources from laboratory flames to engines. This validation study focuses on a soot-chemistry model that considers multiple nucleation, growth, and oxidation reaction pathways. It involves 14 gas-phase precursors and considers the effect of different soot-particle surface sites.
X