Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Journal Article

Improved Modeling of Near-Wall Heat Transport for Cooling of Electric and Hybrid Powertrain Components by High Prandtl Number Flow

2017-03-28
2017-01-0621
Reynolds-averaged Navier-Stokes (RANS) computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+< 5). As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region.
Technical Paper

Performance Analysis of Immersed Boundary Method for Predicting External Car Aerodynamics

2022-03-29
2022-01-0889
This paper presents calculations of external car aerodynamics by using the finite volume (FV) immersed-boundary method. The FV numerical codes primarily employ Reynolds-Averaged Navier-Stokes (RANS) models. In recent years, and due to possibility to run very large computational meshes, these models are usually used in conjunction with the advanced near-wall models. Moreover, it has been often demonstrated that the accuracy of RANS near-wall models relies on the mesh quality near the wall so by the rule, larger number of wall body-fitted cell-layers are employed. An immersed boundary (IB) method becomes an attractive alternative to the ‘standard’ FV approaches especially when applied to low quality CAD data. In general, the IB method is less investigated and validated for the car aerodynamics, particularly in conjunction with advanced near-wall turbulence models and an adaptive mesh refinement (AMR).
X