Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New 3D Model For Vaporizing Diesel Sprays Based on Mixing-Limited Vaporization

2000-03-06
2000-01-0949
Results from numerical computations performed to represent the transient behavior of vaporizing sprays injected into a constant volume chamber and into a High Speed Direct Injection combustion chamber are presented. In order to describe the liquid phase, a new model has been developed from ideas brought forward by recent experimental results (Siebers, 1999) and numerical considerations (Abraham, 1999). The liquid penetration length is given by a 1D model which has been validated on a large number of experiments. In the 3D calculation, break-up, vaporization, drag, collision and coalescence are not modeled. The mass, momentum and energy transfers from the liquid to the gas phase are imposed from the nozzle exit surface to the liquid penetration length. This model enables us to reach time step and grid-independent results. The gas penetrations obtained with the model are checked against experimental results in a constant volume chamber (Verhoeven et al., 1998).
Technical Paper

A Tomographic Camera System for Combustion Diagnostics in SI Engines

1995-02-01
950681
In order to facilitate the analysis of SI engine combustion phenomena, we have developed a fiber optic system which allows the observation of combustion in essentially standard engines. Optical access to the combustion chamber is achieved with micro-optic elements and optical fibers in the cylinder head gasket. Each fiber views a narrow cone of the combustion chamber and transmits the light seen within this acceptance cone to the detector and recorder unit. A large number of such fiber optic detectors have been incorporated in a cylinder head gasket and this multichannel system was arranged in a geometric configuration which allowed the reconstruction of the spatial flame intensity distribution within the observed combustion chamber cross-section. The spatial information was gained from the line-of-sight intensity signals by means of a tomographic reconstruction technique.
Technical Paper

Advanced Methods for Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Optimization and Prediction During Dynamic Warm Up Tests (EDC)

2013-01-09
2013-26-0113
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e.g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure consisting of a number of global data-based sub-models is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Technical Paper

An Integrated Numerical Tool for Engine Noise and Vibration Simulation

1997-05-20
971992
The development of low noise engines and vehicles, accompanied by the reduction of costs and development time, can be obtained only if the design engineer is supported by complex calculation tools in a concurrent engineering process. In this respect, the reduction of vibrations (passenger comfort) and of vehicle noise (accelerated pass by noise) are important targets to meet legislative limits. AVL has been developing simulation programs for the dynamic-acoustic optimization of engines and gear trains for many years. To simulate the structure-born and air-born noise behavior of engines under operating conditions, substantial efforts on the mathematical simulation model are necessary. The simulation tool EXCITE, described in this paper, allows the calculation of the dynamic-acoustic behavior of power units.
Technical Paper

An integrated 1D/3D workflow for analysis and optimization of injection parameters of a diesel engine

2001-09-23
2001-24-0004
The present contribution gives an overview of the use of different simulation tools for the optimization of injection parameters of a diesel engine. With a one-dimensional tool, the behavior of the mechanics and fluid dynamics of the entire injection system is calculated. This simulation provides information on the dynamic needle lift, injection rates, pressures, etc. The flow within the injector is simulated using a three-dimensional CFD tool. By use of a two-phase model, it is possible to analyze the cavitating flow inside the injector and to calculate the effective nozzle hole area as well as the exit flow characteristics. Mixture formation, combustion and pollutant formation simulation is performed adopting three-dimensional CFD. In order to provide the initial and boundary conditions for the engine CFD simulation and to optimize the engine cycle performance a one-dimensional tool is adopted.
Journal Article

Blowdown Interference on a V8 Twin-Turbocharged Engine

2011-04-12
2011-01-0337
The exhaust blowdown pulse from each cylinder of a multi-cylinder engine propagates through the exhaust manifold and can affect the in-cylinder pressure of other cylinders which have open exhaust valves. Depending on the firing interval between cylinders connected to the same exhaust manifold, this blowdown interference can affect the exhaust stroke pumping work and the exhaust pressure during overlap, which in turn affects the residual fraction in those cylinders. These blowdown interference effects are much greater for a turbocharged engine than for one which is naturally aspirated because the volume of the exhaust manifolds is minimized to improve turbocharger transient response and because the turbines restrict the flow out of the manifolds. The uneven firing order (intervals of 90°-180°-270°-180°) on each bank of a 90° V8 engine causes the blowdown interference effects to vary dramatically between cylinders.
Technical Paper

CAE Process for Developing Cylinder Head Design Including Statistical Correlation and Shape Optimization

2010-04-12
2010-01-0494
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
Technical Paper

CSI - Controlled Auto Ignition - the Best Solution for the Fuel Consumption - Versus Emission Trade-Off?

2003-03-03
2003-01-0754
In recent years several new gasoline engine technologies were introduced in order to reduce fuel consumption. Controlled autoignition seems to be an alternative to stratified part load operation, which is handicapped due to it's lean aftertreatment system for world wide application. The principal advantages of controlled auto ignition combustion under steady state operation - combining fuel economy benefits similar to stratified charge systems with nearly negligible NOx and soot emissions - are already well known. With the newly developed AVL- CSI system (Compression and Spark Ignition), a precise combustion control is achieved even under transient operation. For compensation of production and operation tolerances a cost optimized cylinder individual control was developed. Completely new functionalities of the engine management system are applied. This lean GDI concept complies with future emission standards without DeNOx catalyst and can be applied worldwide.
Technical Paper

Catalytic Converters in a 1d Cycle Simulation Code Considering 3d Behavior

2003-03-03
2003-01-1002
The objective of this study to introduce the newly developed Discrete Channel Method (DCM) as a fast and efficient method for the prediction of the 3d and transient behavior of honeycomb-type catalytic converters in automotive applications. The approach is based on the assumption that the regions between the channels are treated as a reactor with a homogeneously distributed heat source due to chemical conversion. Therefore, each radial direction can be described by a center, a boundary and only a few intermediate channels between them. The discrete channels are described by transient, 1d conservation equations that characterize the behavior of channels at different radial positions. The heat entering and leaving each discrete channel is evaluated by the gradients of the temperature field in conjunction with the heat conductivity of the substrate. The approach is validated by experimental data and serves as a module in the thermodynamic and engine analysis design tool BOOST.
Technical Paper

Characterizing a Real-Driving Brake Emissions Sampling System on a Laboratory Test Bed

2023-11-05
2023-01-1875
Brake wear emissions gained significant relevance with the upcoming Euro7 type approval within the European Union for brake emission measurement on the test bed. While the controlled brake test bed approach provides consistent results, real-driving emission (RDE) measurements are needed to better understand actual emission behavior due to varying vehicle and environmental conditions. The EU has already announced its interest in RDE testing. Here we present the results of an RDE brake wear sampling system with minimal thermal impact, where particles are only sampled from one side of the brake disc, characterized on a laboratory sampling system. The investigations aim to validate symmetric particle release and to confirm that doubling the measured RDE results effectively represents the reference emissions on the test bed.
Technical Paper

Combustion Analysis for In - Vehicle Application

2013-01-09
2013-26-0115
Traditional power train development work is concentrated mainly on test bed and on chassis dyno. Though we can simulate a lot of real world conditions on testbed and chassis dyno today, on road application work willis gaining more attention. This means that strategies and tools for invehicle testing under real world conditions are becoming more important. Emission, performance, fuel economy, combustion noise and driving comfort are linked to combustion quality, i.e. quality of fuel mixture preparation and flame propagation. The known testing and research equipment is only partly or not at all applicable for in-vehicle development work. New tools for on the road testing are required. Following, a general view on in-vehicle power train testing will be given. Additionally, new ways to investigate cylinder and cycle specific soot formation in GDI engines with fiber optic tools will be presented.
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

Design Of SI Engines In Regard To Volume Production Beyond Year 2000

1999-03-01
1999-01-0327
The principal engine used in passenger cars is, and in the foreseeable future will be, the SI Engine. This paper summarizes AVL's experience in developing SI Engines for these vehicles. Special attention is given to the new targets of SI Engine development and the resulting design strategies during the concept phase of new engine families. The new modular concept of engine families includes a broad range of different engine designs like three to five cylinder inline and six to ten cylinder V-block engines, direct injection or fully variable valve actuation. It is shown that the design of central engine components, for example, that of the cylinder head, can be adapted for the different SI valve-train concepts by simply switching specific modular components.
Technical Paper

Design of a Laboratory Sampling System for Brake Wear Particle Measurements

2022-09-19
2022-01-1179
Brake wear is one of the dominant sources of traffic-related particulate matter emissions and is associated with various adverse environmental and health hazards. To address this issue, the UNECE mandated the Particle Measurement Program to develop a harmonized methodology for sampling and measuring brake wear particles with a full-flow sampling tunnel on a brake dynamometer. Here we present the design of a novel, fully PMP compliant sampling tunnel. The dimensions and general layout of the tunnel are based on minimization of super-micron particle losses and consideration of space limitations in brake-dynamometer setups as well as the need for efficient utilization of the test facilities (reduced testing times). Numerical calculations suggested that the critical section of the system is the sampling train from the sample probes to the instrumentation inlet/filter holder.
Technical Paper

Designing Single-Purpose or Multi-Purpose Engines for On-Road and Non-Road Use - A Platform Approach

2004-10-26
2004-01-2689
The paper gives an overview of the partially extremely complex problem when looking into commonalities and differences of the three main application areas of engines and powertrains - automotive, agricultural tractors, and industrial engines, the last being predominantly but not exclusively focused on construction equipment. The modern “platform” approach has been used in the automotive world to a large extent and the learned experiences may be of interest for the agricultural tractors and/or the construction equipment manufacturers. On the other hand the truck engine engineers and manufacturers will learn more about the special requirements of the tractor and the industrial engines fields, and thus influence concepts and development procedures and also the production of the automotive engines which in many cases serve as the basis for derivate engines.
Technical Paper

End-Correction in Open Ducts: An Experimental Study

2022-06-15
2022-01-0987
This paper presents the results of an investigation on the influence of a duct’s geometry and shape on its acoustic length, which differs from its physical length by a factor referred to as end-correction. In addition to traditional parameters such as length and diameter, the author has investigated the effect of additional geometry features which are less commonly addressed in the technical literature, such as a diameter contraction or a bent section along the duct. The relative microphone position with respect to the pipe orifice and to the ground surface of the measurement environment has been investigated, showing negligible impact on the measurement results. The sound wave propagation within a pipe featuring a diameter contraction has then been analysed, showing the relationship between the pipe contraction shape and location and the pipe acoustic length.
Technical Paper

Flame Visualisation in Standard SI-Engines - Results of a Tomographic Combustion Analysis

1997-02-24
970870
An optical sensor system provides access to standard SI engine combustion chambers via the cylinder head gasket. Flame radiation within the plane of the gasket is observed with optical fibers which are arranged to allow the tomographic reconstruction of flame distribution. The effect of convective in-cylinder air motion generated by variations of inlet ports and combustion chamber geometries on flame propagation is directly visible. A high degree of correlation between flame intensity distribution and NOx emission levels yields a useful assessment of combustion chamber configurations with minimum emission levels. The location of knock centers is identified.
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
X