Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

Analytical system for combustion engine exhaust emissions

2000-06-12
2000-05-0346
As emission regulations become tighter and tighter, equipment must evolve to be able to achieve the new standards. Also additional test requirements demand a system that is flexible and can accommodate differences both in the tests and the test facility. By that test cell equipment for chassis dynamometer as well as engine dynamometer applications is getting increasingly complex. That also will require new concepts for the design of such systems. In the past emission system design was more likely a collection and packaging process, which has interfaced various independent components. Now, the development of modern analytical emission systems requires a true holistic design process. This paper will describe the demands and the realization of a modern emission system. It can be shown that an extended effort during the design process will result in a high performance system, which still remains simple and robust.
Technical Paper

CSI - Controlled Auto Ignition - the Best Solution for the Fuel Consumption - Versus Emission Trade-Off?

2003-03-03
2003-01-0754
In recent years several new gasoline engine technologies were introduced in order to reduce fuel consumption. Controlled autoignition seems to be an alternative to stratified part load operation, which is handicapped due to it's lean aftertreatment system for world wide application. The principal advantages of controlled auto ignition combustion under steady state operation - combining fuel economy benefits similar to stratified charge systems with nearly negligible NOx and soot emissions - are already well known. With the newly developed AVL- CSI system (Compression and Spark Ignition), a precise combustion control is achieved even under transient operation. For compensation of production and operation tolerances a cost optimized cylinder individual control was developed. Completely new functionalities of the engine management system are applied. This lean GDI concept complies with future emission standards without DeNOx catalyst and can be applied worldwide.
Technical Paper

Comparison of CO2 Emission Levels for Internal Combustion Engine and Fuel Cell Automotive Propulsion Systems

2001-11-12
2001-01-3751
The well-to-wheel CO2 emissions and energy use of internal combustion engines (diesel and gasoline) are compared to fuel cell automotive propulsion systems. The fuel cell technologies investigated are polymer electrolyte fuel cell (PEFC), alkaline fuel cell (AFC) and solid oxide fuel cell (SOFC). The fuels are assumed to be produced from either crude oil or natural gas. The comparison is based on driving cycle simulations of a mid-class passenger car with an inertia test weight of 1350 kg. The study shows that the optimized diesel drive train (downsized mated to an integrated starter generator) achieves the best overall energy efficiency. The lowest CO2 emissions are produced by compressed natural gas (CNG) vehicles. Fuel cell propulsion systems achieve similar or even better CO2 emission values under hot start conditions but suffer from high energy input required during warm-up.
Technical Paper

Designing Single-Purpose or Multi-Purpose Engines for On-Road and Non-Road Use - A Platform Approach

2004-10-26
2004-01-2689
The paper gives an overview of the partially extremely complex problem when looking into commonalities and differences of the three main application areas of engines and powertrains - automotive, agricultural tractors, and industrial engines, the last being predominantly but not exclusively focused on construction equipment. The modern “platform” approach has been used in the automotive world to a large extent and the learned experiences may be of interest for the agricultural tractors and/or the construction equipment manufacturers. On the other hand the truck engine engineers and manufacturers will learn more about the special requirements of the tractor and the industrial engines fields, and thus influence concepts and development procedures and also the production of the automotive engines which in many cases serve as the basis for derivate engines.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Technical Paper

Dimethyl Ether as Fuel for CI Engines - A New Technology and its Environmental Potential

1998-02-23
981158
Dimethyl Ether has been proposed as alternative fuel for combustion engines. The paper gives a brief overview of resources, production, distribution and use of different automotive fuels and compares Dimethyl Ether with other oxygenated synthetic fuels recently proposed. For use in combustion engines Dimethyl Ether requires the introduction of new technologies, mainly in the field of fuel injection systems for direct injection. Such a fuel injection system is described in detail and measured characteristics are shown. For assessment of Dimethyl Ether from the environmental point of view, efficiencies and emissions during production and use of different fuels are summarized and discussed. For evaluation of environmental impacts a method is introduced which compares technical processes with natural cycles of substances and thus determines their “sustainability”.
Technical Paper

Ethanol Direct Injection on Turbocharged SI Engines - Potential and Challenges

2007-04-16
2007-01-1408
In the past application of alternative fuels was mostly concentrated to special markets - e.g. for ethanol and ethanol blends Brazil or Sweden. Now an increasing sensitivity towards dependency on crude oil significantly enhances the interest in alternative fuels. With spark ignited engines, ethanol and gasoline / ethanol blends are the most promising alternative fuels - besides CNG. The high octane number of ethanol and the resulting excellent knock performance gives significant benefits, especially with highly boosted engines. However, the evaporation characteristics of ethanol result in challenges regarding cold start and oil dilution with GDI application. This paper deals with investigations on a turbocharged DI engine operated on ethanol fuel in order to improve challenges of ethanol fuel, such as oil dilution and cold start. Cold start can be improved by injecting fuel late in the compression stroke (high pressure start) based on a refined engine design and operation strategies.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

Minimization of Risks and Difficulties from DESIGN to MASS PRODUCTION for Powertrain Components and Modules

2011-04-12
2011-01-0524
One main general goal during product development in the passenger car industry as well as in the commercial vehicle industry is to reduce time to market. The customer wants to get the newest product and is not accepting the risk of any product call backs. This means the minimization of the risk of field claims for the manufacturer. The challenge to reach this goal is a capable volume production of each new product. To create a competitive, innovative product it is the task for design and simulation engineers in the development phase to design the product in view of function, efficiency, fatigue strength, optimized weight and optimized product costs. Additionally an agreement between design and industrial production planning is required. An early involvement of production engineers into the development of a product ensures design for manufacturing from the very beginning.
Technical Paper

Numerical Studies for De-Icing Validation

2005-04-11
2005-01-1883
The de-icing process of the windscreen is a demanding problem in car climatization. In the first stages of the development procedure of air ducts, the numerical simulation plays an important role due to economy of time and money. Unfortunately, the available numerical methods for the generation of the computational grid and the simulation of the de-icing process are very time consuming and are complicated in handling. Therefore normally the quality of the de-icing process is evaluated with simplified simulation procedures or even with measurements late in the design process and necessary modifications are again time and cost consuming. The aim of this paper is to describe new methods for the de-icing simulation that will reduce meshing and calculation time by showing accurate results.
Technical Paper

Production Feasible DME Technology for Direct Injection CI Engines

2001-05-07
2001-01-2015
DiMethyl Ether (DME) has been shown to be a very attractive fuel for low emission direct injection compression ignition (DICI) engines. It combines the advantages of the high efficiencies of diesel cycle engines with soot free combustion. However, its greatest drawback is the need to develop new fuel injection and handling systems. Previous approaches have been common rail type injection systems which have shown great potential in reducing harmful exhaust emissions and achieving good engine performance and efficiency due to good control of both the fuel injection characteristics and temperature. The concept also has proven benefits with respect to convenient and safe fuel handling. The logical evolution of this concept simplifies the fuel system and avoids special components for DME handling such as high pressure rail pumps while retaining all the benefits of the common rail principle.
Technical Paper

Reducing Emissions and Improving Fuel Economy by Optimized Combustion of Alternative Fuels

2011-10-06
2011-28-0050
Alternative fuels, especially fuels based on biological matter, are gaining more and more attention. Not only as a pure substitute of oil but also in terms of a possibility for further reduction in emission and as an option to improve the global CO2 balance. For improving the engine performance (emissions, fuel consumption, torque and drivability) the adjustment of fuel injection, the fuel evaporation process and the combustion process itself is paramount. In order to exploit the full potential of alternative fuels excellent knowledge of the fuel properties, including the impact on ignition and flame propagation, is required. This needs suitable tools for analysis of the fuel injection and combustion process. These tools have to support the optimization of the combustion system and the dynamic engine calibration for lowest emissions and most efficient use of fuel. As the term “Alternative Fuels” covers a very wide area a brief overview on available fuel types will be made.
Technical Paper

System Validation with Battery-in-the-Loop Configuration Using a Virtual Testing Toolchain

2024-01-16
2024-26-0116
Today, the battery development process for automotive applications is relatively decoupled from the vehicle integration and system validation phase. Battery pack design targets are often disregarded at very early development phases even though they are thoroughly linked to the vehicle-level requirements such as performance, lifetime and cost. Here, AVL proposes a methodology guided by virtual testing techniques to frontload vehicle-level validation tasks in the earlier phase of battery pack testing. This paper focuses on the benefits of the methodology for both battery suppliers and automotive OEMs. Applications will be explained, based on a modular virtual testing toolchain, which involves the simulation platform and models as well as the generation of model parameters and test cases.
Technical Paper

The Performance of a Heavy Duty Diesel Engine with a Production Feasible DME Injection System

2001-09-24
2001-01-3629
Over the last few years there has been much interest in DiMethyl Ether (DME) as an alternative fuel for diesel cycle engines. It combines the advantages of a high cetane number with soot free combustion, which makes it eminently suitable for compression ignition engines. However, due to the fact that it is a gas under ambient conditions, it requires special fuel handling and a specially designed fuel injection system, which until recently, was not available. The use of the digital hydraulic operating system (DHOS), combined with a fuel handling system designed to cope with the properties of DME, enables the fuel to be safely and conveniently handled, In addition, the flexibility of the injection system enables injection pressures to be chosen according to the needs of the combustion.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

1995-12-01
952754
The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
X