Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Technical Paper

A Comparison of Virtual Sensors for Combustion Parameter Prediction of Gas Engines Based on Knock Sensor Signals

2023-04-11
2023-01-0434
Precise prediction of combustion parameters such as peak firing pressure (PFP) or crank angle of 50% burned mass fraction (MFB50) is essential for optimal engine control. These quantities are commonly determined from in-cylinder pressure sensor signals and are crucial to reach high efficiencies and low emissions. Highly accurate in-cylinder pressure sensors are only applied to test rig engines due to their high cost, limited durability and special installation conditions. Therefore, alternative approaches which employ virtual sensing based on signals from non-intrusive sensors retrieved from common knock sensors are of great interest. This paper presents a comprehensive comparison of selected approaches from literature, as well as adjusted or further developed methods to determine engine combustion parameters based on knock sensor signals. All methods are evaluated on three different engines and two different sensor positions.
Technical Paper

A Comprehensive Training Approach for Automotive Cybersecurity Engineering

2024-04-09
2024-01-2800
Cybersecurity assumes a major role in the context of the automotive domain, where both existing and forthcoming regulations are heightening the need for robust security engineering. A significant milestone in advancing cybersecurity within the automotive industry is the release of the first international standard for automotive cybersecurity ISO/SAE 21434:2021 ‘Road Vehicles — Cybersecurity Engineering’. A recently published type approval regulation for automotive cybersecurity (UN R155) is also tailored for member countries of the UNECE WP.29 alliance. Thus, the challenges for embedded automotive systems engineers are increasing while frameworks, tools and shared concepts for cybersecurity engineering and training are scarce.
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Technical Paper

A New 3D Model For Vaporizing Diesel Sprays Based on Mixing-Limited Vaporization

2000-03-06
2000-01-0949
Results from numerical computations performed to represent the transient behavior of vaporizing sprays injected into a constant volume chamber and into a High Speed Direct Injection combustion chamber are presented. In order to describe the liquid phase, a new model has been developed from ideas brought forward by recent experimental results (Siebers, 1999) and numerical considerations (Abraham, 1999). The liquid penetration length is given by a 1D model which has been validated on a large number of experiments. In the 3D calculation, break-up, vaporization, drag, collision and coalescence are not modeled. The mass, momentum and energy transfers from the liquid to the gas phase are imposed from the nozzle exit surface to the liquid penetration length. This model enables us to reach time step and grid-independent results. The gas penetrations obtained with the model are checked against experimental results in a constant volume chamber (Verhoeven et al., 1998).
Journal Article

A New Approach for the Reduction of Aerodynamic Drag of Long-Distance Transportation Vehicles

2013-09-24
2013-01-2414
The optimization of aerodynamic drag represents an important research area for the fuel consumption reduction of heavy duty commercial vehicles. Today's design of tractor-trailers is significantly influenced by legal conditions regarding the vehicle dimensions and the provision of a maximum transportation volume. These boundary conditions lead to brick-shaped trailer outer geometries, especially at the rear ends. That is the reason why the investigations of aerodynamic optimization of commercial vehicle trailers are predominantly restricted to detail measures up to now. The present publication treats the aerodynamic characteristics of general modifications on the outer contour of long-distance haulage trailers in regard of reducing the drag resistance and, thus, potentially also the fuel consumption in highway traffic. A new approach for the realization of a variable outer contour of trailers provides the possibility to adjust the rear end to an aerodynamically optimized shape.
Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

1999-03-01
1999-01-0444
During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. When reconstructing car accidents, quite often questions arise regarding occupant movement and loading. Especially important is the influence of different types of restraint systems on the occupant. MADYMO® is a software tool which was developed by TNO in the Netherlands and which is well known in the automotive industry for the simulation of occupant movement. It allows the simulation of all kinds of modern restraint systems such as airbags and seatbelts with and without pretensioners. As the software is used in the automotive industry quite extensively, a huge validated database of dummy and human models is available. Since MADYMO® demands the setup of quite complicated input files, its use normally requires a high level of expertise.
Technical Paper

A New Approach to an Adaptive and Predictive Operation Strategy for PHEVs

2015-04-14
2015-01-1222
These days a new generation of hybrid electric vehicles (HEV) are penetrating the global vehicle market - the plug-in hybrid electric vehicles (PHEVs). Compared to conventional HEVs, PHEVs have additional significant potential. They are able to improve fuel efficiency and reduce local emissions due to higher battery capacities, and they can be recharged from external outlets. Energy management has a major impact on the PHEVs performance. In this publication, an innovative operation strategy for PHEVs is presented. This is due to the fact that both increasing fuel efficiency and enhancing the vehicle's longitudinal performance requires a fine balance between the consumption of fossil and electric energy. The new operation strategy combines advanced predictive and adaptive algorithms. In contrast to the charge-sustaining strategy of HEVs, the charge-depleting mode for PHEVs is more appropriate.
Technical Paper

A New Device for Transient Measurement of Ultralow Soot Emissions

2004-11-16
2004-01-3267
Future legislation, like EURO IV and EURO V or the US 2007 HD regulation will have massive reduction of particulate emission limits. For this beside improvement of engine combustion also exhaust aftertreatment systems are under investigation, like Diesel Particulate Filters (DPF), or Selective Catalytic Reduction (SCR) of Nitrogen Oxides. For all those tasks transient soot emission monitoring is one of the key features. To meet this demand a new device for the on-line measurement of soot emitted by combustion engines has been developed. Based on the photoacoustic principle, which has been optimized for automotive applications and easy use in test cells, the instrument shows a sensitivity of 5μg/m3, which is lower than current particulate immission standards in ambient air, and a time resolution of 1 sec. In the paper first the principles of measurement are shown, and then the specifications and results from measurements of very low soot concentration in the exhaust gas are presented.
Technical Paper

A Novel Ultrasonic Intake Air Flow Meter for Test Bed Applications

2013-01-09
2013-26-0118
The development process of a combustion engine is now a days strongly influenced by future emission regulations which require further reduction in fuel consumption and precise control of combustion process based on Intake air measurement, during engine development. Intake air flow meters clearly differentiate themselves from typical industrial gas flow meters because of their ability to measure extremely dynamic phenomenon of combustion engine. Thus, high internal data acquisition rate, short response time, ability to measure pulsating and reverse flows with lower measurement uncertainty are the factors that ensures the reliability of the results without being affected by ambient influences, sensor contamination or sensor aging. The AVL developed FLOWSONIX™ is based on ultrasonic transit time measuring principle with broad-band Capacitive Ultrasonic Transducer (CUT) characterized by an excellent air impedance matching strongly distinguishes itself by fulfilling all those requirements.
Technical Paper

A One-Dimensional Model for Square and Octo-Square Asymmetric Particulate Filters with Correct Description of the Channel and Wall Geometry

2018-04-03
2018-01-0951
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater capacity for ash. Somewhat surprisingly, very few models for asymmetric PFs have been published and none of these gives a correct/detailed description of the geometry. For example, octahedral channels may be treated as if they were square or the tapering walls between the inlet and outlet channels treated as if they were rectangular in cross section. Alternatively, the equations may be presented in generic form in terms of channel cross-sectional areas and perimeters, but without giving any indication of how to calculate these. This paper aims to address these deficiencies with a model that correctly describes the geometry of square and octo-square asymmetric PFs. Expressions for the solid fraction of the PF (which affects thermal mass) and channel cross section and perimeter (both when clean and soot/ash loaded) are presented.
Technical Paper

A PN-Measurement System for Small Engine Applications

2023-10-24
2023-01-1809
Particulates are among the most harmful emission components of internal combustion engines (ICE)). Thus, emission limits have been widely introduced, e.g., for light- and heavy-duty vehicles. Although there are still engine applications without particulate limitations, the measurement of particulate mass (PM) and particulate number (PN) emissions is therefore of special interest for the development and operation of ICE. For this purpose, a measurement system for PN consisting of a custom-built sample conditioning and dilution system, and a TSI 3790-A10 [1] condensation particle counter (CPC) as particle number counter (PNC) was designed and built. In this work, we present the conditioning and dilution system, the operational parameters, and results from the particle concentration reduction factor (PCRF) calibration.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Technical Paper

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

2019-06-10
2019-01-1931
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Journal Article

A ‘Microscopic’ Structural Mechanics FE Model of a Lithium-Ion Pouch Cell for Quasi-Static Load Cases

2013-04-08
2013-01-1519
This study deals with the experimental investigation of the mechanical properties of a lithium-ion pouch cell and its modelling in an explicit finite element simulation code. One can distinguish between ‘macroscopic’ and ‘microscopic’ modelling approaches. In the ‘macroscopic’ approach, one material model approximates the behaviour of multiple inner cell layers. In the ‘microscopic’ approach, which is used in the present study, all layers and their interactions are modelled separately. The cell under study is a pouch-type lithium-ion cell with a liquid electrolyte. With its cell chemistry, design, size and capacity it is usable for automotive applications and can be assembled into traction batteries. One cell sample was fully discharged and disassembled, and its components (anode, cathode, separator and pouch) were examined and measured by electron microscopy. Components were also tensile tested.
Technical Paper

AVL Spectros - a Concept for Lightweight Modular Engine Design

2000-03-06
2000-01-0672
The AVL Spectros engine is a version of a potential engine family concept and an example of lightweight and modular design. The model shown and described in detail is a powerful V8 spark-ignited engine developed for the sporty limousine called I.DE.A One. The design objectives were high power density, compact overall dimensions and enhanced efficiency. These objectives have been achieved by means of downsizing, lightweight design, direct injection with exhaust gas turbo-charging and modular heat management system. One of the design targets was to match the design of the engine compartment with the outer appearance of the I.DE.A One vehicle. This was achieved by the integration of all tubes and cables in modules and the conscious avoidance of covers. The starter-alternator concept allows almost all secondary systems to be powered electrically and thus to omit any auxiliary belt drives.
Technical Paper

About Describing the Knocking Combustion in Gasoline and Gas Engines by CFD Methods

2015-09-01
2015-01-1911
Spark ignited engines are today operated more and more often under high load conditions, where one reason can be identified in the necessity of increasing the efficiency and hence reducing fuel consumption and specific CO2 emissions. Since the gasoline engine operation is inherently limited by knocking at high loads, strategies must be identified, which allow reliable identification and simulation of the appearance of this undesirable type of combustion. A new numerical model for the description of those kinds of pre-flame reactions in a CFD framework is discussed in this paper. Despite emphasis is put here on the auto-ignition effects, it will also be explained that the model is capable of supporting the engine development process in all combustion and emission related aspects.
X