Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

A Customer Driven Reliability and Quality Methodology for Existing Products

1989-02-01
890811
In order to maximize customer satisfaction in today's global market place, the quality of products and services need to be improved continually. Increased focus on quality, with the attendant proliferation of methods and tools, has created the need for a comprehensive framework to guide the selection of the tools. Individuals within an organization need to know what tools are appropriate in a given situation, and when, where and how the knowledge gained from an effort should be documented. In addition, a common nomenclature to convey quality related information to each other would avoid confusion and improve the communication process thus improving the effectiveness and productivity of the organization. This paper integrates tools that have evolved recently with the old tools that have been in use for a number of years.
Journal Article

A Data-Driven Diagnostic System Utilizing Manufacturing Data Mining and Analytics

2017-03-28
2017-01-0233
The wide applications of automatic sensing devices and data acquisition systems in automotive manufacturing have resulted in a data-rich environment, which demands new data mining methodologies for effective data fusion and information integration to support decision making. This paper presents a new methodology for developing a diagnostic system using manufacturing system data for high-value assets in automotive manufacturing. The proposed method extends the basic attributes control charts with the following key elements: optimal feature subset selection considering multiple features and correlation structure, balancing the type I and type II errors in decision making, on-line process monitoring using adaptive modeling with control charts, and diagnostic performance assessment using shift and trend detection. The performance of the developed diagnostic system can be continuously improved as the knowledge of machine faults is automatically accumulated during production.
Technical Paper

A Detailed Aerodynamics Investigation of Three Variants of the Generic Truck Utility

2021-04-06
2021-01-0950
Three pickup truck variants of the Generic Truck Utility (GTU) are evaluated and compared using wind tunnel test data and computational fluid dynamics (CFD) simulations. The configurations analyzed are the short cab/long box, medium cab/medium box, and long cab/short box geometries, which all share a common vehicle length and wheelbase. Both cab and box length are known to influence the total bluff body drag through the interaction of the cab wake in the pickup box with the total vehicle wake, and the GTU provides an excellent test box to investigate the details of these interactions. Experimental testing was conducted at the WindShear wind tunnel on a full-scale GTU model, while transient CFD simulations were carried out with IconCFD®, an open-source based solver. Experimental and CFD results are used to describe the general flow field around the vehicle, and a comparison is made with the wind tunnel integral force data as well as centerline pressure tap data.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

1999-03-01
1999-01-1099
Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

A Multi-Physics Approach to Predict High Frequency NVH in Oil Pump Drives

2021-08-31
2021-01-1099
NVH problems are often the result of mechanisms that originate through complex interactions between different physical domains (flow, structural/mechanical, control logic, etc.). Parallel-shaft spur gears subject to light torque loading caused by the dynamic pressure fluctuation of the oil used in engine accessory or transmission pump drives are likely to exhibit unusual gear whine associated with higher order meshing harmonics, even when the tooth profile has a high-quality grade finishing. Therefore, accurate integrated models are becoming a requirement to solve modern NVH problems.
Technical Paper

A NVH CAE approach performed on a vehicle closures pumping issue

2018-09-03
2018-36-0287
The use of finite element modeling (FEM) tools is part of the most of the current product development projects of the automotive industry companies, replacing an important part of the physical tests with lower costs, higher speed and with increasing accuracy by each day. In addition to this, computer-aided engineering (CAE) tools can be either used after the product is released, at any moment of the product life, in many different situation as a new feature release, to validate a more cost-efficient design proposal or to help on solving some manufacturing problem or even a vehicular field issue. Different from the phase where the product is still under development, when standard virtual test procedures are performed in order to validate the vehicle project, in this case, where engineers expertise plays a very important role, before to proceed with any standard test it is fundamental to understand the physics of the phenomena that is causing the unexpected behavior.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
X