Refine Your Search

Topic

Author

Search Results

Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
Technical Paper

A Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions

2000-03-06
2000-01-0242
High-speed video of combustion processes and cylinder pressure traces were obtained from a single-cylinder optical-accessible engine with a production four-valve cylinder head to study the mixture formation and flame propagation characteristics at near-stoichiometric start condition. Laser-sheet Mie-scattering images were collected for liquid droplet distributions inside the cylinder to correlate the mixture formation process with the combustion results. A dual-stream (DS) injector and a quad-stream (QS) injector were used to study the spray dispersion effect on engine starting, under different injection timings, throttle valve positions, engine speeds, and intake temperatures. It was found that most of the fuel under open-valve injection (OVI) conditions entered the cylinder as droplet mist. A significant part of the fuel droplets hit the far end of the cylinder wall at the exhaust-valve side.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

An Experimental Single Cylinder “ECCLINK” VCR Engine

1992-09-01
921695
The improvement in both performance and thermal efficiency of internal combustion engines at higher compression ratios is a well known phenomena. Indeed, a simple Otto Cycle analysis show a potential efficiency improvement of 13% by increasing the compression ratio from 9:1 to 15:1. However, the dilemma for engineers has always been in the realization of a practical operational mechanism. This paper describes the ECCLINK VCR mechanism which enables compression ratio to be altered within given limits on a running engine. A single cylinder 500 cm3 four-stroke research engine, incorporating the ECCLINK mechanism, has been built and tested. Results are presented at both full load and part load over a range of compression ratios, showing improvements in performance and fuel economy. Of particular interest is the fact that full load bsfc improvements equate to typical Otto cycle values.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

Analysis of the 3rd Generation IC-Stirling Engine

2005-09-07
2005-01-3462
The Stirling cycle can be approximated in an internal combustion engine by means of regeneration of internal heat. This article shows computational results from a zero-dimensional thermodynamic analysis where a variety of parameters are studied. Results show that the IC-Stirling cycle offers a significantly better thermal efficiency over a conventional IC engine if some effects, such as the tendency for the cylinder air to “hide” inside the regenerator, are solved.
Technical Paper

CAE Process for Developing Cylinder Head Design Including Statistical Correlation and Shape Optimization

2010-04-12
2010-01-0494
Design of cylinder heads involves complex constraints that must satisfy thermal, strength, performance, and manufacturing requirements which present a great challenge for successful development. During development of a new highly loaded cylinder head, CAE methods predicted unacceptable fatigue safety factors for the initial prototype design. Hydropulsator component testing was undertaken and the results were correlated with the analysis predictions using a statistical method to calculate failure probability. Shape optimization was undertaken to improve high cycle fatigue safety in vulnerable regions of the cylinder head water jacket for the subsequent design release. The optimization process provided more efficient design guidance than previously discovered through a traditional iterative approach. Follow-on investigations examined other shape optimization software for fatigue improvement in the cylinder head.
Technical Paper

Calculation of Heat Release in Direct Injection Diesel Engines

1999-03-01
1999-01-0187
Accurate heat release analysis of cylinder pressure data is a powerful tool used in the development of diesel engines. However, significant errors in the calculated heat release values can occur due to shortcomings in both the experimental measurements and in the heat release model and this can produce misleading results. This paper shows the effect of such common errors on the calculated gross heat release data obtained when analysing simulated and experimental direct injection diesel engine pressure diagrams using a traditional single-zone First Law heat release model. The work reveals that the greatest uncertainty in most cases will be caused by assuming the wrong rate of heat transfer between the cylinder charge and combustion chamber walls. To overcome this limitation, an alternative heat release model is proposed and shown to give very good results over a wide range of operating conditions.
Technical Paper

Can Heavy-Duty Diesel Engines Fueled with DME Meet US 2007/2010 Emissions Standard with A Simplified Aftertreatment System?

2006-04-03
2006-01-0053
Emissions from CI engines fueled with dimethyl ether (DME) were discussed in this paper. Thanks to its high content of fuel oxygen, DME combustion is virtually soot free. This characteristic of DME combustion indicates that the particulate filter will not be needed in the aftertreatment system for engines fueled with DME. NOx emissions from a CI engine fueled with DME can meet the US 2007 regulation with a high EGR rate. Because 49% more fuel mass must be delivered in each DME injection than the corresponding diesel-fuel injection, and the DME injection pressure is lower than 500 bar under the current fuel-system technology, the DME injection duration is generally longer than that of diesel-fuel injection. This is unfavorable to further NOx reduction. A multiple-injection strategy with timing for the primary injection determined by the cylinder temperature was proposed.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Technical Paper

Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations

2016-04-05
2016-01-0593
Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Journal Article

Cylinder-to-Cylinder Variations in Power Production in a Dual Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

2016-04-05
2016-01-0776
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
Technical Paper

Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions

2018-04-03
2018-01-0848
The CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interest in engine downsizing, up-torquing, and alternative fuels for modern spark ignition (SI) engines, there is a need to better understand the conditions that fuels are subjected to in the CFR engine during octane rating. To take into account fuel properties, such as fuel heat of vaporization, laminar flame speed and auto-ignition chemistry; and understand their impacts on combustion knock, it is essential to estimate accurate cylinder conditions. In this study, the CFR F1/F2 engine was modeled using GT-Power with the Three Pressure Analysis (TPA) and the model was validated for different fuels and engine conditions.
Technical Paper

Development of a Reduced-Order Design/Optimization Tool for Automotive Engines Using Massively Parallel Computing

2015-09-06
2015-24-2390
Design and optimization of automotive engines present unique challenges on account of the large design space and conflicting constraints. A notable example of such a problem is optimizing the fuel consumption and reducing emissions over the drive cycle of an automotive engine. There are over twenty design variables (including operating conditions and geometry) for the above-mentioned problem. Conducting design, analyses, and optimization studies over such a large parametric space presents a serious computational challenge. The large design parameter space precludes the use of detailed numerical or experimental investigations. Physics-based reduced-order models can be used effectively in the design and optimization of such problems.
Technical Paper

Diesel Engine Cold Starting: Combustion Instability

1992-02-01
920005
Combustion instability is investigated during the cold starting of a single cylinder, direct injection, 4-stroke-cycle, air-cooled diesel engine. The experiments covered fuels of different properties at different ambient air temperatures and injection timings. The analysis showed that the pattern of misfiring (skipping) is not random but repeatable. The engine may skip once (8-stroke-cycle operation) or twice (12-stroke-cycle operation) or more times. The engine may shift from one mode of operation to another and finally run steadily on the 4-stroke cycle. All the fuels tested produced this type of operation at different degrees. The reasons for the combustion instability were analyzed and found to be related to speed, residual gas temperature and composition, accumulated fuel and ambient air temperature.
Technical Paper

Diesel Engine Diagnosis Based on Analysis of the Crankshaft's Speed Variation

1998-10-19
982540
The variation of the crankshaft's speed is influenced by the action of the cylinders and shall reflect the contribution of each cylinder to the total engine output. At the same time, the speed variation is influenced by the torsional stiffness of the cranks, the mass moments of inertia of the reciprocating mechanisms and the average speed and load of the engine. As the result, the variation of angular motion of the crankshaft is complex, each particular influence changing its importance as speed and load are modified. The diagnostic method presented in the paper is based on the analysis of the amplitudes and phases of the lowest harmonic orders of the measured speed and is capable to determine the average Indicated Mean Effective Pressure (IMEP), to detect nonuniformities in cylinder operation and to identify the faulty cylinder(s).
X