Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects

1993-10-01
932705
A model is presented which incorporates the key mechanisms in the formation and reduction of unburned HC emissions from spark ignited engines. The model includes the effects of piston crevice volume, oil layer absorption / desorption, partial burns, and in-cylinder and exhaust port oxidation. The mechanism for the filling and emptying of the piston crevice takes into account the location of the flame front so that the flow of both burned gas and unburned gas is recognized. Oxidation of unburned fuel is calculated with a global, Arrhenius-type equation. A newly developed submodel is included which calculates the amount of unburned fuel to be added to the cylinder as a result of partial burns. At each crankangle, the submodel compares the rate of change of the burned gas volume to the rate of change of the cylinder volume.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

A Mainstream Test Methodology for Developing a Vehicle Equipped with an Electronic Stability Control System

2014-04-01
2014-01-0130
There have been many articles published in the last decade or so concerning the components of an electronic stability control (ESC) system, as well as numerous statistical studies that attempt to predict the effectiveness of such systems relative to crash involvement. The literature however is free from papers that discuss how engineers might develop such systems in order to achieve desired steering, handling, and stability performance. This task is complicated by the fact that stability control systems are very complex and their designs and what they can do have changed considerably over the years. These systems also differ from manufacturer to manufacturer and from vehicle to vehicle in a given maker of automobiles. In terms of ESC hardware, differences can include all the components as well as the addition or absence of roll rate sensors or active steering gears to name a few.
Technical Paper

A Model-Based Analysis on Size Distribution and Rate of Evaporation for Fuel Drops in a Gasoline Spray in the Engine

2012-04-16
2012-01-1264
Good understanding of fuel sprays in the engine cylinder is crucial to optimizing the operation of direct injection gasoline engines. In this paper, a detailed analysis is conducted on direct gasoline injection sprays from a multi-hole injector. Penetrations and angles of the sprays are characterized with a homogeneous model for the fuel spray. The drop size distributions in the sprays are analyzed using an empirical distribution model. Predicted spray penetrations, spray angles, and drop size distributions under three different injection pressures are compared with the measurements for injection pressures = 40, 100 and 150 bar and good agreements are observed. Transient evaporation rates are also studied for fuel drops in an environment simulating the cylinder condition during the intake stroke of a direct injection gasoline engine.
Technical Paper

A Multinational Approach to European Environmental Concerns

1986-10-06
861588
European legislation covering noise, smoke emission and industrial pollution, all seeking to improve the environment are not addressed in this paper, which takes only exhaust emission and fuel complexity as its subjects. It describes how this complexity can inhibit the development capacity, thus restricting the model offering of a major european automobile manufacturer. The paper concludes that general benefit would be derived from genuine pan european emission legislation, particularly if that legislation was established at levels of control that allowed the development and use of modern engine technology.
Technical Paper

A New Port and Cylinder Wall Wetting Model to Predict Transient Air/Fuel Excursions in a Port Fuel Injected Engine

1996-05-01
961186
We have developed a new wall wetting model to predict the transient Air/Fuel ratio excursion in a port fuel injected (PFI) engine due to changes in air or fuel flow. The quasi-dimensional model accounts for fuel films both in the port as well as in the cylinder of a PFI engine and includes the effects of back-flow on the port fuel films to redistribute and vaporize the fuel. A multi-component fuel model is included in the simulation; it gives realistic fuel behavior and allows the effects of different fuel distillation curves to be studied. The multi-component fuel model calculates the changing composition of the fuel puddles in the port and cylinder during the cycle. The inclusion of an in-cylinder fuel film allows the model to be used for cold start conditions down to 290 K. The model uses the Reynold's analogy to calculate the fuel vaporization process and uses a boundary layer calculation to solve for the liquid film flow.
Technical Paper

A Non-Intrusive Method of Measuring PCV Blowby Constituents

1994-10-01
941947
A technique is presented that has been successfully demonstrated to non-intrusively and quickly sample gases typically found in PCV systems. Color Detection Tubes (CDTs) were used with a simple sampling arrangement to monitor CO2, NOx, O2, and H2O(g) at the closure line, crankcase, and PCV line. Measurements were accurate and could be made instantaneously. Short Path Thermal Desorbtion Tubes (SPTDTs) were used at the same engine locations for the characterization of fuel- and oil-derived hydrocarbon (HC) fractions and required only 50 cc samples. High engine loads caused pushover of blowby vapors as indicated by increased concentrations of CO2, NOx, H2O(g), and fuel HCs in the engines' fresh air inlets during WOT operation. Peak concentrations of blowby vapors were measured in the crankcase under no load and part throttle conditions. Oxygen concentrations always opposed the trends of CO2, NOx, and H2O(g).
Technical Paper

A Performance Comparison of Various Automatic Transmission Pumping Systems

1996-02-01
960424
The pumping system used in a step ratio automatic transmission can consume up to 20% of the total power required to operate a typical automotive transmission through the EPA city cycle. As such, it represents an area manufacturers have focused their efforts towards in their quest to obtain improved transmission efficiency. This paper will discuss the history of automatic transmission pumps that develop up to 300 psi along with a description of the factors used to size pumps and establish pump flow requirements. The various types of pumps used in current automatic transmissions will be described with a discussion of their characteristics including a comparison based upon observations of their performance. Specific attention will be focused on comparing the volumetric efficiency, mechanical efficiency, overall efficiency, pumping torque and discharge flow.
Technical Paper

A Predictive Model for Feedgas Hydrocarbon Emissions: An Extension to Warm Engine Maps

2005-10-24
2005-01-3862
A feedgas hydrocarbon emissions model that extends the usefulness of fully-warmed steady-state engine maps to the cold transient regime was developed for use within a vehicle simulation program that focuses on the powertrain control system (Virtual Powertrain and Control System, VPACS). The formulation considers three main sources of hydrocarbon. The primary component originates from in-cylinder crevice effects which are correlated with engine coolant temperature. The second component includes the mass of fuel that enters the cylinder but remains unavailable for combustion (liquid phase) and subsequently vaporizes during the exhaust portion of the cycle. The third component includes any fuel that remains from a slow or incomplete burn as predicted by a crank angle resolved combustion model.
Technical Paper

A Preliminary Study of Virtual Humidity Sensors for Vehicle Systems

2014-04-01
2014-01-1156
New vehicle control algorithms are needed to meet future emissions and fuel economy mandates that are quite likely to require a measurement of ambient specific humidity (SH). Current practice is to obtain the SH by measurement of relative humidity (RH), temperature and barometric pressure with physical sensors, and then to estimate the SH using a fit equation. In this paper a novel approach is described: a system of neural networks trained to estimate the SH using data that already exists on the vehicle bus. The neural network system, which is referred to as a virtual SH sensor, incorporates information from the global navigation satellite system such as longitude, latitude, time and date, and from the vehicle climate control system such as temperature and barometric pressure, and outputs an estimate of SH. The conclusion of this preliminary study is that neural networks have the potential of being used as a virtual sensor for estimating ambient and intake manifold's SH.
Technical Paper

A Review of the Effect of Engine Operating Conditions on Borderline Knock

1996-02-01
960497
The effects of engine operating conditions on the octane requirement and the resulting knock-limited output were studied on a single cylinder engine using production cylinder heads. A 4-valve cylinder head with port deactivation was used to study the effect of fuel octane, inlet air temperature, coolant temperature, air/fuel ratio, compression ratio and exhaust back pressure. The effect of the thermal environment was studied in more detail using separate cooling systems for the cylinder head and engine block on a 2-valve cylinder head. The results of this study compared closely with results found in the literature even though the engine and/or operating conditions were quite different in many cases.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

A Structural Ceramic Diesel Engine-The Critical Elements

1987-02-01
870651
A structural ceramic diesel engine has the potential to provide low heat rejection and significant improvements in fuel economy. Analytical and experimental evaluations were conducted on the critical elements of this engine. The structural ceramic components, which included the cylinder, piston and pin, operated successfully in a single cylinder engine for over 100 hours. The potential for up to 8-11% improvement in indicated specific fuel consumption was projected when corrections for blow-by were applied. The ringless piston with gas squeeze film lubrication avoided the difficulty with liquid lubricants in the high temperature piston/cylinder area. The resulting reduction in friction was projected to provide an additional 15% improvement in brake specific fuel consumption for a multi-cylinder engine at light loads.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Technical Paper

An Advanced Instrument for the Real Time Measurement of Engine Oil Economy

1992-02-01
920655
A number of advancements have been made in the coulometric sulfur trace instrumental technique for the real-time measurement of engine oil economy. These advancements include modification of the coulometric cell to improve reliability and reproducibility. The instrument has been interfaced with a microcomputer for instrument control as well as data acquisition, storage, and analysis. Studies were undertaken which demonstrate sufficient sensitivity and linearity for determination of engine oil economy at levels better than 10,000 miles/quart. Applications to steady-state engine oil consumption mapping and to instantaneous oil consumption during transient engine cycling are described. These instruments are being produced by an outside supplier for use in various company locations in both the engine production and engine research environments.
Technical Paper

An Algorithm to Compensate for Air Charge Prediction Errors

2000-03-06
2000-01-0258
Various methods are available to predict future cylinder air charge for improved air/fuel control. However, there can never be perfect prediction. This paper presents an algorithm to correct for imperfect cylinder charge prediction. This is done by expanding the air/fuel control boundary to include the catalyst, and correcting prediction errors as soon as possible using small corrective changes to later cylinder fuel inputs. The method was experimentally tested and showed improved air/fuel control as indicated by reduced variability of catalyst downstream air/fuel ratio. Additional vehicle testing showed potential to further reduce emissions.
Technical Paper

An Analytical Method for Determining Engine Torque Harmonics for Use With Up Front CAE

1995-05-01
951248
An analytical method for determining engine torque harmonics is presented. The approach employs an engine cycle simulation model to calculate instantaneous cylinder pressure for each operating condition based on engine characteristics that can be determined experimentally and/or analytically. Cylinder pressure is converted to instantaneous torque from which harmonics are determined using an FFT algorithm. A description of the cycle simulation model, including required data, is presented. The method is validated by presenting correlation results at a number of operating conditions (i.e. engine speeds and loads) comparing analytical versus test driveline torque harmonics. Finally, limitations in the method as well as possible extensions to the method are discussed.
X