Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Automatic Sound Static Analysis for Integration Verification of AUTOSAR Software

2023-04-11
2023-01-0591
Preventing systematic software failures is of paramount importance for any highly automatic vehicle control system, in particular for safety-critical AUTOSAR software. Among the most critical software defects are runtime errors like buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. Sound static analysis can be used to report all such defects in the code, or to prove their absence. It can also determine dependencies between software components and show freedom of interference without missing any data and control flow through data or function pointers. In the past, AUTOSAR projects often had to be decomposed or simplified to achieve satisfactory analysis time or memory consumption. Creating the analysis model, i.e., determining the tasks and ISRs to analyze, their priorities, synchronization, etc., required significant manual effort.
Technical Paper

Finding All Potential Run-Time Errors and Data Races in Automotive Software

2017-03-28
2017-01-0054
Safety-critical embedded software has to satisfy stringent quality requirements. All contemporary safety standards require evidence that no data races and no critical run-time errors occur, such as invalid pointer accesses, buffer overflows, or arithmetic overflows. Such errors can cause software crashes, invalidate separation mechanisms in mixed-criticality software, and are a frequent cause of errors in concurrent and multi-core applications. The static analyzer Astrée has been extended to soundly and automatically analyze concurrent software. This novel extension employs a scalable abstraction which covers all possible thread interleavings, and reports all potential run-time errors, data races, deadlocks, and lock/unlock problems. When the analyzer does not report any alarm, the program is proven free from those classes of errors. Dedicated support for ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-aware analysis.
X