Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Clutch Parameter Effects on Torque and Friction Stability

2011-04-12
2011-01-0722
Approximation formulas are presented for the time response of the film thickness and torque in a wet clutch. The approximation formulas show the effects of various clutch parameters on the film thickness, the hydrodynamic torque and the asperity torque. Clutch parameters affecting the film thickness and torque include friction material characteristics, lubricant properties, the geometry of the clutch plates and the time-dependent apply pressure. The approximation formulas are obtained from heuristic curve fits of previously published and validated models. It is also shown that a positive gradient (dTf/dωslip > 0) of the friction torque, Tf, with respect to slip speed, ωslip, promotes friction stability. This stability gradient is obtained analytically using the approximation formulas so that the effects of the clutch parameters on friction stability are also shown.
Technical Paper

Continuously Variable Transmission (CVT) Fuel Economy

2017-10-08
2017-01-2355
Due to its simplicity and fuel economy benefit, continuously variable transmission (CVT) technology has gained a lot of attention in recent years. Market penetration of CVT technology is increasing rapidly compared to step-type automatic transmission technology. OEMs, Tier 1 suppliers, and lubricant suppliers are working to further improve the fuel economy benefit of CVTs. As a lubricant supplier, we want to understand the effects of fluid properties on CVT fuel economy (FE). We have formulated fluids that had KV100 ranges from 2-4 cSt to 7-9 cSt with various types and viscosities of base oils. Wide ranges of viscosity indexes, steel-on-steel friction, and other properties were tested. Full vehicle fuel economy tests were performed in a temperature controlled environment with a robotic driver. The test revealed that there was more than 3% overall FE variation compared to a reference fluid.
Technical Paper

Development of Next Generation Gear Oil for Heavy Duty Vehicles

2017-03-28
2017-01-0890
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
Technical Paper

Fluid Effects on Shifting Clutch Friction

2016-10-17
2016-01-2206
Good shift quality in automatic transmissions is important for fuel efficiency, driver comfort, and performance. Maintaining this performance over the life of the vehicle is also important. Typically lubricant development focuses on reducing viscosity and friction in order to reduce parasitic losses. In an automatic transmission other factors are also important for good performance, primarily due to the shifting clutches and the torque converter clutch. A high level of friction is desirable for torque capacity and a steady decrease in friction as sliding speed (rpm) decreases is necessary for both good shift feel and good friction system durability over the lifetime of the vehicle. Changes in the friction system over time that result in a lowering of the friction level, particularly at higher sliding speeds, compromise the performance of both types of clutches.
Journal Article

Lubricants for (Hybrid) Electric Transmissions

2013-04-08
2013-01-0298
In electric or hybrid electric transmissions, the transmission fluids can be in contact with the parts of the electric motors, for example, electrical windings in the stators in order to efficiently cool the electric motors and to insulate the electrical parts to prevent a short circuit of the electric motors. The transmission fluids must therefore have low electrical conductivities [1,2,3,4,5,6,7,8,9]. Transmission fluids contain dispersants, which can be reaction products of hydrocarbyl substituted carboxylic acids or anhydrides and amines. These dispersants can be further post-treated with boron and phosphorus compounds to improve friction and anti-wear properties. Certain dispersants, which have nitrogen content up to 10,000 ppm by weight, and boron plus phosphorus to nitrogen ((B+P)/N) weight ratios of from 0.1 to about 0.8 : 1.0, were found to be effective to provide low electrical conductivities less than 1,700 pS/m [10].
Technical Paper

Testing Wet Clutch Systems for Anti-Shudder Performance

2020-04-14
2020-01-0560
The wet clutch system (WCS) is a complex combination of friction plates, separator plates and fluid (lubricant). The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch (TCC) operation. Under these conditions the slope of the coefficient of friction (μ or COF) versus slip speed (μ-v) curve must be positive to prevent shudder of the WCS, a highly undesirable condition in the lubricated friction system. An extended durability duty cycle test procedure is required to evaluate the WCS during which the μ-v curve is monitored for a negative slope, a condition indicating the potential for shudder. The friction plates, separator plates, and lubricant must be tested together and remain together during the test to be properly evaluated as a WCS.
X