Refine Your Search

Topic

Author

Search Results

Technical Paper

A Distributed Environment for Analysis of Events Related to Range Safety

2004-11-02
2004-01-3095
This paper features a distributed environment and the steps taken to incorporate the Virtual Range model into the Virtual Test Bed (VTB) infrastructure. The VTB is a prototype of a virtual engineering environment to study operations of current and future space vehicles, spaceports, and ranges. The High-Level Architecture (HLA) is the main environment. The VTB/HLA implementation described here represents different systems that interact in the simulation of a Space Shuttle liftoff. An example implementation displays the collaboration of a simplified version of the Space Shuttle Simulation Model and a simulation of the Launch Scrub Evaluation Model.
Technical Paper

A Distributed Environment for Spaceports

2004-11-02
2004-01-3094
This paper describes the development of a distributed environment for spaceport simulation modeling. This distributed environment is the result of the applications of the High-Level Architecture (HLA) and integration frameworks based on software agents and XML. This distributed environment is called the Virtual Test Bed (VTB). A distributed environment is needed due to the nature of the different models needed to represent a spaceport. This paper provides two case studies: one related to the translation of a model from its native environment and the other one related to the integration of real-time weather.
Technical Paper

A Distributed Simulation of a Martian Fuel Production Facility

2017-09-19
2017-01-2022
The future of human exploration in the solar system is contingent on the ability to exploit resources in-situ to produce mission consumables. Specifically, it has become clear that the success of a manned mission to Mars will likely depend on fuel components created on the Martian surface. While several architectures for an unmanned fuel production surface facility on Mars exist in theory, a simulation of the performance and operation of these architectures has not been created. In this paper, the framework describing a simulation of one such architecture is defined. Within this architecture, each component of the base is implemented as a state machine, with the ability to communicate with other base elements as well as a supervisor. An environment supervisor is also created which governs low level aspects of the simulation such as movement and resource distribution, in addition to higher-level aspects such as location selection with respect to operations specific behavior.
Journal Article

A Methodology on Guiding Effectiveness-Focused Training of the Weapon Operator Using Big Data and VC Simulations

2017-09-19
2017-01-2018
Operator training using a weapon in a real-world environment is risky, expensive, time-consuming, and restricted to the given environment. In addition, governments are under intense scrutiny to provide security, yet they must also strive for efficiency and reduce spending. In other words, they must do more with less. Virtual simulation, is usually employed to solve these limitations. As the operator is trained to maximize weapon effectiveness, the effectiveness-focused training can be completed in an economical manner. Unfortunately, the training is completed in limited scenarios without objective levels of training factors for an individual operator to optimize the weapon effectiveness. Thus, the training will not be effective. For overcoming this problem, we suggest a methodology on guiding effectiveness-focused training of the weapon operator through usability assessments, big data, and Virtual and Constructive (VC) simulations.
Technical Paper

A Model-Based Fault Diagnostic and Control System for Spacecraft Power

1992-08-03
929099
This paper describes a model-based approach to diagnosing electrical faults in electrical power systems. Until recently, model-based reasoning has only been applied to physical systems with static, persistent states, and with parts whose behavior can be expressed combinatorially, such as digital circuits. Our research is one of a handful of recent efforts to apply model-based reasoning to more complex systems, those whose behavior is difficult or impossible to express combinatorially, and whose states change continuously over time. The chosen approach to representation is loosely based on the idea of the equation network proposed in [6]. This requires a more complex component and behavior model than for simpler physical devices. The resulting system is being tested on fault data from the SSM/PMAD power system breadboard being developed at NASA-MSFC [9].
Technical Paper

A System-of-Systems Approach to Aerospace Ground Equipment

1999-10-19
1999-01-5555
The Air Force Research Laboratory Deployment and Sustainment Division (AFRL/HES), in coordination with Arthur D. Little, Inc., has undertaken a system-of-systems approach to defining and designing aerospace ground equipment (AGE). This method is usually used to take advantage of the open architecture nature of ne and developing electronics through modular design. This paper discusses how we applied it across the electronic, mechanical, and structural aspects of AGE to research and develop a new concept to meet the burgeoning needs of the 21st century Air Force.
Technical Paper

AC Impedance Characterization and Life Testing of Lithium-Ion Batteries

1999-04-06
1999-01-1402
As part of the DoD/NASA Lithium-Ion and More-Electric Aircraft (MEA) development programs, in-house life-testing and performance characterization of lithium-ion batteries of sizes 1-20 amp-hours (Ah) were performed. Using AC impedance spectroscopy, the impedance behavior of lithium-ion cells with respect to temperature, cycle number, electrode, and state-of-charge was determined. Cell impedance is dominated by the positive (cathode) electrode, increases linearly with cycle number, and exponentially increases with decreasing temperature. From cell performance testing, we have seen the cell behavior is extremely sensitive to the ambient temperature. Preliminary battery performance results as well as AC impedance and life cycle test results are presented below.
Technical Paper

Across-Gimbal Ambient Thermal Transport System

2001-07-09
2001-01-2195
This paper describes the development, operation and testing of an across-gimbal ambient thermal transport system (GATTS) for carrying cryocooler waste heat across a 2-axis gimbal. The principal application for the system is space-based remote sensing spacecraft with gimbaled cryogenics optics and/or infrared sensors. GATTS uses loop heat pipe (LHP) technology with ammonia as the working fluid and small diameter stainless steel tubing to transport 100–275 W across a two-axis gimbal. The tubing is coiled around each gimbal axis to provide flexibility (less than 0.68 N-m [6 lbf-in] of tubing-induced torque per axis) and fatigue life. Stepper motors are implemented to conduct life cycling and to assess the impact of motion on thermal performance. An LHP conductance of approximately 7.5 W/C was demonstrated at 200 W, with and without gimbal motion. At the time this paper was written, the gimbal had successfully completed over 500,000 cycles of operation with no performance degradation.
Journal Article

An Architecture for Monitoring and Anomaly Detection for Space Systems

2013-09-17
2013-01-2090
Complex aerospace engineering systems require innovative methods for performance monitoring and anomaly detection. The interface of a real-time data stream to a system for analysis, pattern recognition, and anomaly detection can require distributed system architectures and sophisticated custom programming. This paper presents a case study of a simplified interface between Programmable Logic Controller (PLC) real-time data output, signal processing, cloud computing, and tablet systems. The discussed approach consists of three parts: First, the connectivity of real-time data from PLCs to the signal processing algorithms, using standard communication technologies. Second, the interface of legacy routines, such as NASA's Inductive Monitoring System (IMS), with a hybrid signal processing system. Third, the connectivity and interaction of the signal processing system with a wireless and distributed tablet, (iPhone/iPad) in a hybrid system configuration using cloud computing.
Technical Paper

Autonomous Flight Control Development on the Active Aeroelastic Wing Aircraft

2004-11-02
2004-01-3116
A highly modified F/A-18 aircraft is being used to demonstrate that aeroelastic wing twist can be used to roll a high performance aircraft. A production F/A-18A/B/C/D aircraft uses a combination of aileron deflection, differential horizontal tail deflection and differential leading edge flap deflection to roll the aircraft at various Mach numbers and altitudes. The Active Aeroelastic Wing program is demonstrating that aeroelastic wing twist can be used in lieu of the horizontal tail to provide autonomous roll control at high dynamic pressures. Aerodynamic and loads data have been gathered from the Phase I AAW flight test program. Now control laws have been developed to exploit aeroelastic wing twist and provide autonomous flight control of the AAW aircraft during Phase II. Wing control surfaces are being deflected in non-standard ways to create aeroelastic wing twist and develop the required rolling moments without use of the horizontal tail.
Technical Paper

Business and Process Improvements in the Investment Casting Sector

1998-06-02
981855
The Engine Supplier Base Initiative (ESBI) is a joint Air Force/Industry cooperative agreement aimed at achieving affordable precision investment cast airfoil and large structural components for man-rated gas turbine engines. The ESBI program will obtain these goals through the implementation of business and technology improvements with specific focus on increased product quality and reduced cycle time. This program has brought together competitors in the business to solve sector wide problems. This paper presents the framework of the teaming approach as well as results achieved in quality and cycle time improvements through technical and business process improvements.
Technical Paper

Development of the Multi-Resolution Modeling Environment through Aircraft Scenarios

2018-10-30
2018-01-1923
Multi-Resolution Modeling (MRM) is one of the key technologies for building complex and large-scale simulations using legacy simulators. MRM has been developed continuously, especially in military fields. MRM plays a crucial role to describe the battlefield and gathering the desired information efficiently by linking various levels of resolution. The simulation models interact across different local and/or distance area networks using the High Level Architecture (HLA) regardless of their operating systems and hardware. The HLA is a standard architecture developed by the US Department of Defense (DoD) and is meant to create interoperability among different types of simulators. Therefore, MRM implementations are very dependent on Interoperability and Composability. This paper summarizes the definition of MRM-related terminology and proposes a basic form of MRM system using Commercial Off-The-Shelf (COTS) simulators and HLA.
Technical Paper

Double Bypass Turbofan Engine Modeling including Transient Effects

2010-11-02
2010-01-1800
Modern military engines desire both the fuel efficiency of high-bypass turbofans and the high specific thrust of a low-bypass turbofan. Using traditional engine architectures, performance and efficiency are in conflict, so an engine is usually designed to best meet requirements for its primary mission. While the concept of a variable cycle engine is not new, recent advances in engine architecture technology suggest that adding a second bypass stream to a traditional turbofan can provide significant benefits. This “third stream” (the core flow being the primary stream and the inner bypass being the second stream) airflow can be independently modulated so that engine airflow demand can be matched with the available inlet flow at a variety of operating points, thereby reducing spillage drag. Additionally, the third stream air provides a valuable heat sink for cooling turbine cooling air or dissipating other aircraft heat loads.
Technical Paper

Dynamic Object Map Based Architecture for Robust CVS Systems

2020-04-14
2020-01-0084
Connected and Autonomous Vehicles (CAV) rely on information obtained from sensors and communication to make decisions. In a Cooperative Vehicle Safety (CVS) system, information from remote vehicles (RV) is available at the host vehicle (HV) through the wireless network. Safety applications such as crash warning algorithms use this information to estimate the RV and HV states. However, this information is uncertain and sparse due to communication losses, limitations of communication protocols in high congestion scenarios, and perception errors caused by sensor limitations. In this paper we present a novel approach to improve the robustness of the CVS systems, by proposing an architecture that divide application and information/perception subsystems and a novel prediction method based on non-parametric Bayesian inference to mitigate the detrimental effect of data loss on the performance of safety applications.
Technical Paper

Effect of Inventory Storage on Automotive Flooded Lead-Acid Batteries

2019-09-20
2019-01-5081
The battery is a central part of the vehicle’s electrical system and has to undergo cycling in a wide variety of conditions while providing an acceptable service life. Within a typical distribution chain, automotive lead-acid batteries can sit in storage for months before delivery to the consumer. During storage, batteries are subjected to a wide variety of temperature profiles depending on facility-specific characteristics. Additionally, batteries typically do not receive any type of maintenance charge before delivery. Effects of storage time, temperature, and maintenance charging are explored. Flooded lead-acid batteries were examined immediately after storage and after installation in vehicles subjected to normal drive patterns. While phase composition is a major consideration, additional differences in positive active material (PAM) were observed with respect to storage parameters.
Technical Paper

Effects of Transient Power Extraction on an Integrated Hardware-in-the-Loop Aircraft/Propulsion/Power System

2008-11-11
2008-01-2926
As aircraft continue to increase their power and thermal demands, transient operation of the power and propulsion subsystems can no longer be neglected at the aircraft system level. The performance of the whole aircraft must be considered by examining the dynamic interactions between the power, propulsion, and airframe subsystems. Larger loading demands placed on the power and propulsion subsystems result in thrust, speed, and altitude transients that affect the aircraft performance and capability. This results in different operating and control parameters for the engine that can be properly captured only in an integrated system-level test. While it is possible to capture the dynamic interactions between these aircraft subsystems by using simulations alone, the complexity of the resulting system model has a high computational cost.
Technical Paper

Enabling Much Higher Power Densities in Aerospace Power Electronics with High Temperature Evaporative Spray Cooling

2008-11-11
2008-01-2919
A power electronics module was equipped with an evaporative spray cooling nozzle assembly that served to remove waste heat from the silicon devices. The spray cooling nozzle assembly took the place of the standard heat sink, which uses single phase convection. The purpose of this work was to test the ability of spray cooling to enable higher power density in power electronics with high temperature coolant, and to be an effective and lightweight system level solution to the thermal management needs of aerospace vehicles. The spray cooling work done here was with 95 °C water, and this data is compared to 100 °C water/ propylene glycol spray cooling data from a previous paper so as to compare the spray cooling performance of a single component liquid to that of a binary liquid such as WPG. The module used during this work was a COTS module manufactured by Semikron, Inc., with a maximum DC power input of 180 kW (450 VDC and 400 A).
Technical Paper

External Condenser Design for Cooling of Rotating Heat Pipe in MEA Application

1999-04-06
1999-01-1360
Rotating Heat Pipe (RHP) technolog y is being developed for high speed (>20 krpm) regimes of electric motor/generator cooling. The motivation for this research is the potential application of the high speed RHPs for the thermal management of advanced rotating electrical machines. The passive nature and relatively simple features of this device are attractive for the removal of waste heat from the rotors of electric machines. Interesting air-cooling experimental results of two high speed RHPs designed, fabricated and tested at AFRL are presented here. Emphasis is made on external heat removal concepts useful for cooling the RHP condenser in order to be successful in promoting this technology to real world problems.
Technical Paper

F-16 Battery/Charger Evaluation

1999-08-02
1999-01-2486
As the maintenance and disposal costs of aircraft batteries have risen, it has become critical to increase battery lifetime and to reduce maintenance cycles. This has led to the development of charging techniques designed to increase battery life while continuing to satisfy battery performance requirements. However, the cost of battery chargers accounts for 60% to 80% of the battery/charger system cost. AFRL/PRPB has initiated an in-house project to evaluate F-16 batteries using the existing F-16 charger. The objective is to determine which batteries can pass all F-16 performance and lifetime requirements using this charger. Several batteries were procured from several sources and two F-16 chargers are on loan to us from Sacramento/ALC. Depending on the outcome of this phase the project may be extended to include other aircraft and other chemistries such as Nickel-Metal Hydride and Lithium-Ion. Results to date and future plans will be discussed in this paper.
Journal Article

Heat Transfer Performance of a Dual Latent Heat Sink for Pulsed Heat Loads

2008-11-11
2008-01-2928
This paper presents the concept of a dual latent heat sink for thermal management of pulse heat generating electronic systems. The focus of this work is to verify the effectiveness of the concept during charging through experimentation. Accordingly, custom components were built and a prototype version of the heat sink was fabricated. Experiments were performed to investigate the implementation feasibility and heat transfer performance. It is shown that this heat sink is practicable and helps in arresting the system temperature rise during charging (period of pulse heat load).
X