Refine Your Search

Topic

Search Results

Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

A Study of Flame Propagation for Different Combustion Chamber Configurations in an SI Engine

1997-02-24
970876
High speed natural light motion picture records synchronized with head gasket ionization probe and in-cylinder pressure data have been made in the transparent engine of different combustion chamber configurations. For knocking cycles, the head gasket ionization current method simultaneously taken with pressure data was able to find the location of knocking occurrence. To investigate the effects of combustion chamber configurations, the flame propagation experiments for pent-roof combustion chamber with center ignition ( Modified Type I engine ) and modified pent-roof ( Type II engine ) combustion chamber were performed with high speed natural light photography technique. The flame propagation of Modified Type I engine represents more uniform patterns than that of Type II engine. The investigation of knocking combustion was also made possible by observing flame propagation with the measuring techniques that use head gasket ionization probe and in-cylinder pressure data.
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

2018-04-03
2018-01-1319
The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Technical Paper

Characteristics of the Luxury Sound Quality of a Premium Class Passenger Car

2009-05-19
2009-01-2183
Luxury sound is one of the most important sound qualities in a premium passenger car. Previous work has shown that, because of the effects of many different interior sounds, it is difficult to evaluate the luxury sound objectively by using only the A-weighted sound pressure level. In this paper, the characteristics of such sound were first investigated by a systematic approach and a new objective evaluation method for luxury sound-the luxury sound quality index--which was developed by the systematic combination of the seven major interior sound quality indexes based on path analysis. The seven major sounds inside a passenger car were selected by a basic investigation evaluated by the members of a luxury automotive club. Seven major interior sound quality indexes were developed by using sound metrics, which are the psychoacoustic parameters, and the multiple regression method used for the modeling of the correlation between objective and subjective evaluation.
Technical Paper

Development of Driving Cycle for CO2 Emission Test of Heavy-Duty Vehicles

2013-10-14
2013-01-2520
As a part of the global efforts to reduce CO2 emission, studies are in progress to derive regulation measures for CO2 emission from heavy-duty vehicles. Thus, identification of emission characteristics of CO2 for heavy-duty vehicle is required and test driving cycle for this would be necessary. Before developing a test driving cycle to identify the emission characteristics of CO2, selection of test subject vehicles and actual road test was carried out. Through this, road drive characteristics per diverse vehicle type and emission levels of CO2 were identified. Correlations between the currently used cycles of each country and the actual road were analyzed and the cycle most similar to the actual road situations was selected among various countries' cycles to verify whether its easy use was possible for the actual tests. The test driving cycle selected after comparison with actual road situations was modified so as to enable actual tests for all heavy-duty vehicles.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Development of Parallel and Direct Cooling System for EV/FCEV Inverter

2018-04-03
2018-01-0454
This paper presents the direct liquid-cooled power module with the circular pin fin which is the inverter parallel cooling system for high output EV/FCEV. The direct cooling system of a conventional inverter is designed to supply coolant along the direction in which the heating element such as Si-chip is disposed and discharge coolant to the opposite side. In case of the inverter, the higher the output is, the larger temperature difference between inlet and outlet becomes due to the heat exchange of the heat generation element, so that temperature difference depends on the position of Si-chip. Since lifetime is judged on the basis of maximum temperature of Si-chip, the inverter itself must be replaced or discarded due to durability of the inverter even though Si-chip can drive further. The simple way to solve this problem is to increase cooling flow rate, but this leads to excessive increase in pressure loss due to circular pin fin.
Journal Article

Development of Standardized Battery Pack for Next-Generation PHEVs in Considering the Effect of External Pressure on Lithium-Ion Pouch Cells

2018-04-03
2018-01-0439
The performance and marketability of eco-friendly vehicles highly depend on their high-voltage battery system. Lithium-ion pouch cells have advantages of high energy density and cost-effectiveness than other types of batteries. However, due to their low mechanical stability, their characteristics are strongly influenced by external conditions. Especially, external pressure on pouch cell is a crucial factor for the performance, life cycle, and structural safety of battery pack. Therefore, optimizing pressure level has been a critical consideration in designing battery pack structures for lithium-ion pouch cell. In this work, we developed an optimized structure of the battery module and pack to apply appropriate pressure on pouch cells. They also include a standardization strategy to meet the varied demand in capacity and power for automotive application.
Technical Paper

Development of Truck Platooning System Including Emergency Braking Function with Vehicle-in-the-Loop (VIL) Testing

2023-04-11
2023-01-0571
Platoon is a system that connects vehicles through vehicle-to-vehicle (V2V) communication technology to maintain a short distance between vehicles while driving on the road. To improve fuel efficiency, many automotive original equipment manufacturers (OEMs) are interested in developing and demonstrating real-world platoon system. However, it is hard for heavy duty trucks to develop this system due to the difficulty of maintaining the targeted intervehicle distance not only for fuel efficiency but also for safety in case of emergency braking. Because of this critical safety issue in the emergency situation, the platoon system for heavy duty trucks can be hardly demonstrated or tested in real vehicle environment. The relatively complex system and the slow response characteristic of commercial vehicles makes this even more difficult.
Technical Paper

Development of a Vehicle System Model for the First Medium- and Heavy-Duty Commercial Vehicle Fuel Efficiency Standards in Korea

2015-09-29
2015-01-2774
To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

2024-04-09
2024-01-2586
Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NOx) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity.
Technical Paper

Numerical Simulation on the Raindrop Transportation in the Turbulent Flow Field of the Heavy-Duty Intake System

2006-04-03
2006-01-1191
In this study, two-phase flow simulations have been performed for the intake system of a commercial truck. The intake duct, which is the first component in heavy-duty engine, is located in the upper side of a cabin. The flow in the intake system is a typical two-phase flow with the air as the continuous phase and the water as the dispersed phase during rainy weather. The numerical two-phase simulation is performed by using the Largrangian model as implemented in STAR-CD. The influence of the water droplets on the airflow as well as droplet break-up and interactions of the droplets with the walls can be taken into account. Two and three cyclone model inside the intake system have been investigated by numerical simulations. The computational results can be used to get a better understanding of the physics of the flow inside the intake system and to optimize the water separation.
Technical Paper

Partial Elasto-Hydrodynamic Lubrication Analysis for Cylindrical Conformal Contact Model Considering Effect of Surface Wave

2007-08-05
2007-01-3533
Numerous machine elements are operated in mixed lubrication regime where is governed by a combination of boundary and fluid film effects. The direct contact between two surfaces reduces a machines life by increasing local pressure. In order to estimate machine's life exactly, the effect of asperity contact should be considered in the lubrication model. In this study, new 3-dimensional partial elasto-hydrodynamic lubrication (PEHL) algorithm is developed. The algorithm contains the procedures to find out solid contact regions within the lubricated regime and to calculate both the pressure by fluid film and the contact pressure between the asperities of the solids. Using the algorithm, we conducted the PEHL analysis for the contact between the rotating shaft and the inside of pinion gear. To investigate the effect of surface topology two different surfaces with sinusoidal profile are used. Both film thickness and pressure are calculated successfully through the PEHL algorithm.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition

2005-05-11
2005-01-2108
Conventional combustion models are suitable for predicting flame propagation for a wrinkled flamelet configuration. But they cannot predict the burned gas composition. This causes the overestimation of burned gas temperature and pressure. A modified method of combustion simulation was established to calculate the chemical composition and to investigate their ultimate fate in the burned gas region. In this work, the secondary products of combustion process, like CO and H2, were considered as well as the primary products like CO2 and H2O. A 3-dimensional CFD program was used to simulate the turbulent combustion and a zero dimensional equilibrium code was used to predict the chemical composition of burned gas. With this simple connection, more reasonable temperature and pressure approaching the real phenomena were predicted without additional time costs.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
X