Refine Your Search

Topic

Author

Search Results

Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

2019-04-02
2019-01-1233
Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
Technical Paper

A Preliminary Study on the Evaporative Cooling System for FCEV

2024-04-09
2024-01-2406
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Technical Paper

A Study on NVH Performance Improvement of TPE Air Intake Hose Based on Optimization of Design and Material

2019-06-05
2019-01-1491
Environmental and fuel economy regulations (Eu 6d and WLTP RDE) on automobiles have been tightened recently. To counter this regulation, the global automobile industry is focusing on weight reduction, fuel efficient turbo charger, cooled EGR, thermal management, low friction and so on. However, the high-speed turbocharger makes turbulence, and resulting in airflow noise. This noise is transmitted indoor through the air intake system, which adversely affects the vehicle's competitiveness. Therefore, for turbo engine, it is essential to reduce the noise of the air intake system. The air intake system consists of air cleaner, air filter, air intake hose and air duct. The air flow noise of turbo-engine is mainly the emission noise emitted from the walls of air intake system. And the transfer path of turbo noise is in order of air intake hose, air cleaner and air duct. Therefore, it is effective to reduce the noise of the air intake hose located at the beginning of noise transfer path.
Technical Paper

A Study on the Advanced Technology Analysis Process of Steering System for Idle Performance

2007-05-15
2007-01-2339
This paper describes the optimal design process of the steering column system and the supporting system. At the initial concept stage of development process, a design guide is proposed to obtain sufficient stiffness of the steering system while reducing idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, in which separated vibration modes among systems by applying Vibration Mode Map at the initial stage of design process. This study also makes it possible to provide design guideline for optimal dynamic damper system using CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to vehicle model to analyze the relation between the frequency and the sensitivity of steering column system. This analysis methodology enables target performance achievement in early design stage and reduction of damper tuning activity after proto car test stage.
Technical Paper

A Study on the Sound Transmission Loss of Split HVAC for Electric Vehicles

2022-06-15
2022-01-0981
Generally, the HVAC system of a vehicle is composed of Blower unit assembly and Heater unit assembly, and is located on the driver’s side of the dash panel. However, electric vehicles have far fewer parts than conventional internal combustion engine vehicles, so electric vehicles have large space in the engine room. This allows HVAC, which occupies large volume in the interior side, to be pushed in the direction of the engine room altogether, or by placing a part inside the engine room to make a slim cockpit and expand the interior space. However, this new structure, called the Split HVAC System, is mounted through the dash, allowing noise to pass through relatively easily. Since this adversely affects the NVH of an electric vehicle, it needs to be developed in terms of noise transmission. Therefore, in this paper, a study was conducted to predict the sound transmission loss of Split HVAC through an analytical method.
Technical Paper

Analysis of Microorganism Causing Odor in an Air-Conditioning System

2015-04-14
2015-01-0354
This study has been conducted to analyze microbial diversity and its community by using a method of NGS(Next generation sequencing) technique that is not rely on cultivation for microbial community in an core evaporator causing odor of car air conditioner. The NGS without any cultivation method of cultivation, has been developed recently and widely. This method is able to research a microorganism that has not been cultivated. Differently with others, it can get a result that is closer to fact, also can acquire more base sequence with larger volume in relatively shorter time. According to bacteria population analysis of 23 samples, It can be known limited number of bacteria can inhabit in Evaporator core, due to small exposure between bacteria and evaporate, as well as its environmental characteristics. With the population analysis, only certain group of it is forming biofilm in proportion.
Technical Paper

Control of Automotive PEM Fuel Cell Systems

2007-08-05
2007-01-3491
In order to understand the automotive PEM fuel cell system, mathematical system modeling is conducted and the model is implemented and simulated by using the Matlab®/Simulink®. The components such as fuel cell stack, air supplier, and radiator are modeled individually and integrated into a system level. The PEM fuel cell system operation control includes thermal management, air supply control, hydrogen supply control, fuel cell stack protection control, and load following control. In the thermal management, the inlet and outlet temperature of coolant are controlled to operate the fuel cell stack in desired temperature range and to prevent flooding inside the fuel cell stack. In air supply control and hydrogen supply control, the flow rates of air and hydrogen are controlled not to starve the fuel cell stack according to the output current. A control structure for the system is developed and confirmed by using the developed simulation model.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

Development of Effective Exhaust Gas Heat Recovery System for a Hybrid Electric Vehicle

2011-04-12
2011-01-1171
The success of improved fuel economy is the proper integration of thermal management components which are appropriately performed to reduce friction and wasted energy. The thermal management systems of vehicle are able to balance the multiple needs such as heating, cooling, or appropriate operation within specified temperature ranges of propulsion systems. Since the propulsion systems of vehicle have changed from a single energy source based on conventional internal combustion engine to hybrid system including more electrical system such as full type of hybrid electric vehicle or plug-in hybrid electric vehicles, a new transition associated with vehicle thermal management arises. More efficient thermal management systems are required to improve the fuel economy in the hybrid electric vehicles because of the driving of electric traction motor and the increase of engine off time. The decrease of engine operation time may not sustain the proper temperature ranges of engine and gearbox.
Technical Paper

Development of Noise Diagnosis and Prediction Technology for Column-Based Electric Power Steering Systems Using Vehicle Controller Area Network Data

2024-04-09
2024-01-2897
The steering system is a critical component for controlling a vehicle's direction. In the context of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, where drivers may not always be actively holding the steering wheel, early detection of precursor noise signals is essential to prevent serious accidents resulting from the loss of steering system functionality. It is therefore imperative to develop a device capable of early detection and notification of steering system malfunctions. Therefore, the current study aimed to quantify the noise levels generated within the Column-based Electric Power Steering (C-EPS) system of a D-segment sedan. To this end, we measured the uniaxial acceleration in nine noise-generating areas while simultaneously collecting data from three Controller Area Network (CAN) sources that are directly related to steering operation.
Technical Paper

Development of Vehicle Thermal Management Model for Improving the Energy Efficiency of Electric Vehicle

2022-03-29
2022-01-0201
Recently, automobile manufacturers are interested in the development of battery electric vehicle (BEV) having a longer mileage to satisfy customer needs. The BEV with high efficiency depends on the temperature of the electric components. Hence it is important to study the effect of the cooling system in electric vehicle in order to optimize efficiency and performance. In this study, we present a 1-D vehicle thermal management (VTM) simulation model. The individual vehicle subsystems were modeled including cooling, power electric (PE), mechanical, and control components. Each component was integrated into a single VTM model and it would be used to calculate energy transfer among electrical, thermal, and mechanical energy. As a result, this simulation model predicts a plenty of information including the state of each component such as temperature, energy consumption, and operating point about electric vehicle depending on driving cycles and environmental conditions.
Technical Paper

Development of the Rig and Hardware-in-the-Loop Test Bench for Evaluating Steering Performance

2020-04-14
2020-01-0647
The development of vehicles faces changes in many future flows. The vehicle’s power transfer systems are being changed from conventional types to Hybrid, Electric and Hydrogen vehicles. At this moment, the technology of EPS (Electric Power Steering) system has been expanding from a simple torque assist system to LKAS(Lane Keeping Assist System), PAP(Park Assist Pilot), ALCAS(Active Lane Change System), ADAS(Advanced Driver Assistance System). A good test bench is necessary for the evaluation of both hardware and control logics of EPS in these complexities of development process. Simultaneous Rig and HILS tests can be performed to check that the steering hardware system can perform to the concept of the development vehicle and develop EPS control logic performances. The hardware performance of the steering system might be evaluated based on measured friction and stiffness, taking into account various driving conditions.
Technical Paper

Driver Mental Stress in Response to Thermal Stress Change during Highway Driving

2023-04-11
2023-01-0146
Monitoring driver thermal stress is an integral step for developing an automated climate control function. In this experimental study, various physiological measures for driver’s thermal stress were tracked while intentionally by altering thermal conditions of the seat with a seat air conditioning system (ACS) in summer and a seat heating system (HS) in winter. It was aimed to determine reliable physiological measures for identifying the changes in thermal status induced by the two seat climate control systems. In the first experiment, twenty experienced drivers drove a comfortable sedan for 60 minutes on a real highway while varying the intensity of the seat ACS every 10 minutes to incur ‘hot’ – ‘cool’ – ‘hot’ – ‘cool’ thermal stress. In the second experiment, a new group of eighteen drivers drove the same highway for 30 minutes while increasing the intensity of seat HS to incur ‘cold’ to ‘warm’ thermal stress.
Technical Paper

E3 System – A Two speed Accessory Belt Drive System for Reduced Fuel Consumption

2008-06-23
2008-01-1521
All vehicles have some or all accessories such as alternators, air conditioner compressors, power steering pumps, and water pumps. These devices are mounted on the front of the engine and are powered by a pulley mounted on the front of the crankshaft. This power represents a parasitic loss and this loss is greater at higher engine speeds. To reduce the impact of the accessories on the engine, a two speed transmission that reduces the accessories speed at off-idle conditions was designed, implemented, and tested on several vehicles. The vehicles were tested for fuel economy on the Japanese 10.15 Mode driving cycle, the FTP75 city cycle, and the HWFET Highway Cycle. Results showed an average of 5% reduction in fuel consumption and a corresponding 5% in CO2 with no impact of accessory performance and vehicle drivability. Simulations with GT-Drive software was used to determine the optimum speed reduction and the threshold switching speed that maximizes fuel savings.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
X