Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

4 Versus 8 Counterweights for an I4 Gasoline Engine Crankshaft - Analytical Comparison

2008-04-14
2008-01-0088
This paper presents results of an analytical comparison between two alternative versions of a crankshaft for a 2.2L gasoline engine. The first version had 8 counterweights and a bay balance factor of 80.3%. The second had 4 (larger) counterweights giving a bay balance factor of 56.6% and a crankshaft mass reduction of 1.42 kg. The results presented in this paper relate to the main bearings in terms of specific loads, oil film thickness and shaft tilt angle under full load and no load conditions across the speed range. Torsional vibration analysis and crankshaft stress analysis were also performed but the results are not presented here. The differences in bearing force and oil film thickness were very small and the only major difference in terms of shaft tilt angle occurred at Mains 2 and 4 (increase of ∼ 20% compared with 8 counterweight version).
Technical Paper

Design and Analysis of a Lightweight Crankshaft for a Racing Motorcycle Engine

2007-04-16
2007-01-0265
This paper describes the design and analysis of a lightweight crankshaft for a high speed racing motorcycle engine. It covers the evolution of the crankshaft from the baseline, with rated speed of 14000 rpm, to the final design with rated speed of 16000 rpm. The lightweight crankshaft is compared with the baseline design in terms of the following criteria. Balance Mass and rotating inertia Main bearing loads and oil film thickness Torsional vibration Stress and fatigue safety factor
Technical Paper

Piston Assembly Friction Losses: Comparison of Measured and Predicted Data

2006-04-03
2006-01-0426
The main objective of this research was to validate the friction prediction capability of Ricardo Software products PISDYN and RINGPAK by comparing predictions with measured piston assembly friction force. The measurements were made by the University of Leeds on a single cylinder Ricardo Hydra gasoline engine using an IMEP method developed by the University. This technique involves the use of advanced instrumentation to make accurate measurements of cylinder pressure, crankshaft angular velocity and connecting rod strain. These measured values are used to calculate the forces acting on the piston assembly including the friction force. PISDYN was used by Ricardo to calculate friction force at the interface between the piston skirt and cylinder liner. The model used includes the effects of secondary dynamics, partial lubrication and piston skirt profile. RINGPAK was used by Ricardo to calculate the friction force at each piston ring.
X