Refine Your Search

Topic

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

2019-01-15
2019-01-0001
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Technical Paper

Development of Fuel Consumption Test Method Standards for Heavy-Duty Commercial Vehicles in China

2011-09-13
2011-01-2292
To restrain the environmental and energy problems caused by oil consumption and improve fuel economy of heavy-duty commercial vehicles, China started developing relevant standards from 2008. This paper introduces the background and development of China's national standard “Fuel consumption test methods for heavy-duty commercial vehicles”, and mainly describes the test method schemes, driving cycle and weighting factors for calculating average fuel consumption of various vehicle categories. The standard applies to heavy-duty vehicles with the maximum design gross mass greater than 3500 kg, including semi-trailer tractors, common trucks, dump trucks, city buses and common buses. The standard adopts the C-WTVC driving cycle which is adjusted on the basis of the World Transient Vehicle Cycle[1, 2] and specifies weighting factors of urban, rural and motorway segments for different vehicle categories.
Technical Paper

Development of Guidelines for the Use of Commercial CFD in Tractor-Trailer Aerodynamic Design

2005-11-01
2005-01-3513
With rising oil prices, the issue of energy economy in transportation is getting much attention. At the same time, new emissions standards for tractor-trailer vehicles introduce additional challenges for the manufacturers to achieve improvements in vehicle fuel economy. As part of the U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies' Heavy Vehicle Aerodynamic Drag Consortium, Argonne National Laboratory is currently developing guidelines for the use of commercial computational fluid dynamics (CFD) software to facilitate energy efficiency improvements through improved aerodynamic design of tractor-trailer vehicles. The development of these guidelines requires the consideration of the sensitivity of the accuracy of the analysis to the various modeling choices available to the end user.
Technical Paper

Development of a Fast, Robust Numerical Tool for the Design, Optimization, and Control of IC Engines

2013-09-08
2013-24-0141
This paper discusses the development of an integrated tool for the design, optimization, and real-time control of engines from a performance and emissions standpoint. Our objectives are threefold: (1) develop a tool that computes the engine performance and emissions on the order of a typical engine cycle (25-50 milliseconds); (2) enable the use of the tool for a wide variety of engine geometries, operating conditions, and fuels with minimal user changes; and (3) couple the engine module to an efficient optimization module to enable real-time control and optimization. The design tool consists of two coupled modules: an engine module and an optimization module.
Technical Paper

Effect of Fuel Temperature on the Performance of a Heavy-Duty Diesel Injector Operating with Gasoline

2021-04-06
2021-01-0547
In this last decade, non-destructive X-ray measurement techniques have provided unique insights into the internal surface and flow characteristics of automotive injectors. This has in turn contributed to enhancing the accuracy of Computational Fluid Dynamics (CFD) models of these critical injection system components. By employing realistic injector geometries in CFD simulations, designers and modelers have identified ways to modify the injectors’ design to improve their performance. In recent work, the authors investigated the occurrence of cavitation in a heavy-duty multi-hole diesel injector operating with a high-volatility gasoline-like fuel for gasoline compression ignition applications. They proposed a comprehensive numerical study in which the original diesel injector design would be modified with the goal of suppressing the in-nozzle cavitation that occurs when gasoline fuels are used.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

Exploration of Cavitation-Suppressing Orifice Designs for a Heavy-Duty Diesel Injector Operating with Straight-Run Gasoline

2019-09-09
2019-24-0126
The occurrence of cavitation inside injectors is generally undesirable since it can cause material erosion and result in deviations from the expected injector performance. Previous numerical work employing an injector geometry measured with x-ray diagnostics and operating with a high-volatility straight-run gasoline (SRG) has shown that: (1) most of the cavitation is generally observed at low needle lifts, (2) needle motion is responsible for asymmetric structures in the internal flow as well as large pressure and velocity gradients that trigger phase transition at the orifice inlets, and (3) cavitation affects the injector discharge coefficient and distribution of injected fuel. To explore the potential for material damage within the injector orifices due to cavitation cloud collapse, the cavitation-induced erosion risk assessment (CIERA) tool has been applied for the first time to the realistic geometry of a heavy-duty injector using the CONVERGE software.
Technical Paper

Fan Shroud Optimization Using Adjoint Solver

2016-09-27
2016-01-8070
Fan and fan-shroud design is critical for underhood air flow management. The objective of this work is to demonstrate a method to optimize fan-shroud shape in order to maximize cooling air mass flow rates through the heat exchangers using the Adjoint Solver in STAR-CCM+®. Such techniques using Computational Fluid Dynamics (CFD) analysis enable the automotive/transport industry to reduce the number of costly experiments that they perform. This work presents the use of CFD as a simulation tool to investigate and assess the various factors that can affect the vehicle thermal performance. In heavy-duty trucks, the cooling package includes heat exchangers, fan-shroud, and fan. In this work, the STAR-CCM+® solver was selected and a java macro built to run the primal flow and the Adjoint solutions sequentially in an automated fashion.
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Technical Paper

Integration of Vehicle Performance and Fuel Economy Software with Military Ground Vehicle Mission Assessment Tools

2016-04-05
2016-01-0314
A simulation approach is defined that integrates a military mission assessment tool (One Semi-Automated Forces) with a commercial automotive control/energy consumption development tool (Autonomie). The objective is to enable vehicle energy utilization and fuel consumption impact assessments relative to US Army mission effectiveness and commercial drive cycles. The approach to this integration will be described, along with its potential to meet its objectives.
Technical Paper

Investigation of Aerodynamic Influence on Truck Platooning

2015-09-29
2015-01-2895
This paper investigates the aerodynamic influence of multiple on-highway trucks in different platooning configurations. Complex pressure fields are generated on the highways due to interference of multiple vehicles. This pressure field causes an aerodynamic drag to be different than the aerodynamic drag of a vehicle in a no-traffic condition. In order to study the effect of platooning, three-dimensional modeling and numerical simulations were performed using STAR-CCM+® commercial Computational Fluid Dynamics (CFD) tool. The aerodynamic characteristics of vehicles were analyzed in five different platooning configurations with two and three vehicles in single and multiple lanes. A significant Yaw Averaged Aerodynamic Drag (YAD) reduction was observed in both leading and trailing vehicles. YAD was based on the average result of three different yaw angles at 0°, −6° and 6°. In single-lane traffic, YAD reduction was up to 8% and 38% in leading and trailing vehicles, respectively.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
Technical Paper

Near-Nozzle Spray Characteristics of Heavy-Duty Diesel Injectors

2003-10-27
2003-01-3150
The process of spray atomization has typically been understood in terms of the Rayleigh-Taylor instability theory. However, this mechanism has failed to fully explain much of the measured data. For this reason a number of new atomization mechanisms have been proposed. The present study intends to gain an understanding of the spray dynamics and breakup processes in the near-nozzle region of heavy-duty diesel injector sprays. As this region is optically dense, synchrotron x-rays were used to gain new insights. This spray study was performed using a prototype common-rail injection system, by injecting a blend of diesel fuel and cerium-containing organometalic compound into a chamber filled with nitrogen at 1 atm. The x-rays were able to probe the dense region of the spray as close as 0.2 mm from the nozzle. These x-ray images showed two interesting features. The first was a breakup of the high density region about 22 μs After the Start Of Injection (ASOI).
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Technical Paper

Numerical Investigation of the Impact of Fuel Flow Rate on Combustion in a Heavy-Duty Diesel Engine with a Multi-Row Nozzle Injector

2022-03-29
2022-01-0395
Diesel engines are one of the most popular combustion systems used in different types of heavy-duty applications because of higher efficiencies compared to the spark ignition engines. Combustion phasing and the rate of heat release in diesel engines are controlled by the rate at which the fuel is injected into the combustion chamber near top dead center. In this work, computational fluid dynamics (CFD) was employed to simulate the combustion behavior of a heavy-duty diesel engine equipped with a 16-hole injector, in which the nozzles were arranged in two individual rows. The two rows of nozzles have differential flow rate due to the geometrical construction of the injector. Combustion and performance characteristics of the engine were compared with and without considering the differential flow rate of the nozzle rows at a range of injection timing values.
Technical Paper

Using Modeling and Simulation to Support Future Medium and Heavy Duty Regulations

2011-01-19
2011-26-0048
Other than in Japan, medium and heavy duty vehicles (MHDVs) are not regulated despite accounting for a significant portion of the fuel consumed (about 26% in the US in 2008). Government agencies worldwide are currently evaluating options to address that issue. Due to the large number of vehicle applications, some of them being “one of a kind”, vehicle modelling and simulation offers an attractive solution to medium and heavy duty regulations. This paper discusses the advantages and challenges of vehicle simulation to support regulations.
X