Refine Your Search

Topic

Search Results

Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Technical Paper

A PEV Emulation Approach to Development and Validation of Grid Friendly Optimized Automated Load Control Vehicle Charging Systems

2018-04-03
2018-01-0409
There are many challenges in implementing grid aware plug-in electric vehicle (PEV) charging systems with local load control. New opportunities for innovative load control were created as a result of changes to the 2014 National Electric Code (NEC) about automatic load control definitions for EV charging infrastructure. Stakeholders in optimized dispatch of EV charging assets include the end users (EV drivers), site owner/operators, facility managers and utilities. NEC definition changes allow for ‘over subscription’ of more potential EV charging station load than can be continuously supported if the total load at any time is within the supply system safety limit. Local load control can be implemented via compact submeter(s) with locally hosted control algorithms using direct communication to the managed electric vehicle supply equipment (EVSE).
Technical Paper

An Assessment of Electric Vehicle Life Cycle Costs to Consumers

1998-11-30
982182
A methodology for evaluating life cycle cost of electric vehicles (EVs) to their buyers is presented. The methodology is based on an analysis of conventional vehicle costs, costs of drivetrain and auxiliary components unique to EVs, and battery costs. The conventional vehicle's costs are allocated to such subsystems as body, chassis, and powertrain. In electric vehicles, an electric drive is substituted for the conventional powertrain. The current status of the electric drive components and battery costs is evaluated. Battery costs are estimated by evaluating the material requirements and production costs at different production levels; battery costs are also collected from other sources. Costs of auxiliary components, such as those for heating and cooling the passenger compartment, are also estimated. Here, the methodology is applied to two vehicle types: subcompact car and minivan.
Technical Paper

Analysis and Model Validation of the Toyota Prius Prime

2019-04-02
2019-01-0369
The Toyota Prius Prime is a new generation of Toyota Prius plug-in hybrid electric vehicle, the electric drive range of which is 25 miles. This version is improved from the previous version by the addition of a one-way clutch between the engine and the planetary gear-set, which enables the generator to add electric propulsive force. The vehicle was analyzed, developed and validated based on test data from Argonne National Laboratory’s Advanced Powertrain Research Facility, where chassis dynamometer set temperature can be controlled in a thermal chamber. First, we analyzed and developed components such as engine, battery, motors, wheels and chassis, including thermal aspects based on test data. By developing models considering thermal aspects, it is possible to simulate the vehicle driving not only in normal temperatures but also in hot, cold, or warmed-up conditions.
Technical Paper

Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

2018-04-03
2018-01-0667
Today’s electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations.
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Automated Model Based Design Process to Evaluate Advanced Component Technologies

2010-04-12
2010-01-0936
To reduce development time and introduce technologies faster to the market, many companies have been turning more and more to Model Based Design. In Model Based Design, the development process centers around a system model, from requirements capture and design to implementation and test. Engineers can skip over a generation of system design processes on the basis of hand coding and use graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a Plug-and-Play Software Environment, to design and evaluate component hardware in an emulated environment. We will discuss best practices and provide an example through evaluation of advanced high-energy battery pack within an emulated Plug-in Hybrid Electric Vehicle.
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Technical Paper

Development and Implementation of SAE DC Charging Digital Communication for Plug-in Electric Vehicle DC Charging

2013-04-08
2013-01-1188
This paper outlines the development and progress of implementing the SAE J2931, J2847/2 and J1772 communication standards to accomplish off-board DC charging. Communication between the off-board DC Electric Vehicle Supply Equipment (EVSE) and Plug-in Electric Vehicle (PEV) occurs on the pilot wire of the SAE J1772 connector via HomePlug Green PHY power line communication (PLC). An Electric Vehicle Communication Controller (EVCC) was developed to interface with the PEV's Battery Energy Control Module (BECM). A Supply Equipment Communication Controller (SECC) was also developed to interface with the DC EVSE's Power Control Module (PCM). Firmware was developed to implement the SAE J2931/1 communication stack, which is harmonized with the ISO/IEC DIS 15118-2 and DIN 70121 standards for DC charging communication.
Technical Paper

Development and Validation of the Ford Focus Battery Electric Vehicle Model

2014-04-01
2014-01-1809
This paper presents the vehicle model development and validation process for the Ford Focus battery electric vehicles (BEVs) using Autonomie and test results from Advanced Powertrain Research Facility in Argonne National Laboratory. The parameters or characteristic values for the important components such as the electric machine and battery pack system are estimated through analyzing the test data of the multi cycle test (MCT) procedure under the standard ambient condition. A novel process was used to import vehicle test data into Autonomie. Through this process, a complete vehicle model of the Ford Focus BEV is developed and validated under ambient temperature for different drive cycles (UDDS, HWFET, US06 and Steady-State). The simulation results of the developed vehicle model show coincident results with the test data within 0.5% ∼ 4% discrepancies for electrical consumption.
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Video

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Technical Paper

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-04-16
2012-01-1011
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Technical Paper

Mass Impacts on Fuel Economies of Conventional vs. Hybrid Electric Vehicles

2004-03-08
2004-01-0572
The strong correlation between vehicle weight and fuel economy for conventional vehicles (CVs) is considered common knowledge, and the relationship of mass reduction to fuel consumption reduction for conventional vehicles (CVs) is often cited without separating effects of powertrain vs. vehicle body (glider), nor on the ground of equivalent vehicle performance level. This paper challenges the assumption that this relationship is easily summarized. Further, for hybrid electric vehicles (HEVs) the relationship between mass, performance and fuel consumption is not the same as for CVs, and vary with hybrid types. For fully functioning (all wheel regeneration) hybrid vehicles, where battery pack and motor(s) have enough power and energy storage, a very large fraction of kinetic energy is recovered and engine idling is effectively eliminated.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Technical Paper

Plug-and-Play Software Architecture to Support Automated Model-Based Control Process

2010-10-05
2010-01-1996
To reduce development time and introduce technologies to the market more quickly, companies are increasingly turning to Model-Based Design. The development process - from requirements capture and design to testing and implementation - centers around a system model. Engineers are skipping over a generation of system design processes based on hand coding and instead are using graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a plug-and-play software environment, to evaluate a component hardware in an emulated environment. We will discuss best practices and show the process through evaluation of an advanced high-energy battery pack within an emulated plug-in hybrid electric vehicle.
Technical Paper

Potential Cost Savings of Combining Power and Energy Batteries in a BEV 300

2016-04-05
2016-01-1213
Present-day battery technologies support a battery electric vehicle with a 300mile range (BEV 300), but the cost of such a vehicle hinders its large-scale adoption by consumers. The U.S. Department of Energy (DOE) has set aggressive cost targets for battery technologies. At present, no single technology meets the cost, energy, and power requirements of a BEV 300, but a combination of multiple batteries with different capabilities might be able to lower the overall cost closer to the DOE target. This study looks at how such a combination can be implemented in vehicle simulation models and compares the vehicle manufacturing and operating costs to a baseline BEV 300. Preliminary analysis shows an opportunity to modestly reduce BEV 300 energy storage system cost by about 8% using a battery pack that combines an energy and power battery. The baseline vehicle considered in the study uses a single battery sized to meet both the power and energy requirements of a BEV 300.
X