Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Correlating Laboratory Oil Aerosol Coking Rig Tests to Diesel Engine Tests to Understand the Mechanisms Responsible for Turbocharger Compressor Coking

2017-03-28
2017-01-0887
Deposit formation within turbocharger compressor housings can lead to compressor efficiency degradation. This loss of turbo efficiency may degrade fuel economy and increase CO2 and NOx emissions. To understand the role that engine oil composition and formulation play in deposit formation, five different lubricants were run in a fired engine test while monitoring turbocharger compressor efficiency over time. Base stock group, additive package, and viscosity modifier treat rate were varied in the lubricants tested. After each test was completed the turbocharger compressor cover and back plate deposits were characterized. A laboratory oil mist coking rig has also been constructed, which generated deposits having the same characteristics as those from the engine tests. By analyzing results from both lab and engine tests, correlations between deposit characteristics and their effect on compressor efficiency were observed.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Technical Paper

Development of a Piston Ring-Cylinder Bore Wear Model

2000-06-19
2000-01-1788
In an internal combustion engine, the wear in the piston ring/cylinder bore contact initially increases rapidly due to run-in and then attains a steady state during which the engine spends most of its useful life. This paper describes the development of an abrasive wear model for both cylinder bore and piston rings for the steady state period. The model took into account shear thinning of the lubricant, but it did not consider the effects of transient operations, geometry changes due to bore distortions, ring twist, ring motion, and corrosion. The model predicted the bore wear depth distribution from the top dead center (TDC) to the bottom dead center (BDC) and ring wear depth under different operating conditions. The maximum bore wear depth was predicted to occur at about 20 degrees after TDC where the combustion gas pressure reached its peak value. The model predicted an increase in bore and ring wear depth with increasing engine speed.
Journal Article

Effect of Biodiesel (B20) on Vehicle-Aged Engine Oil Properties

2010-10-25
2010-01-2103
High concentrations of diesel fuel can accumulate in the engine oil, especially in vehicles equipped with diesel particle filters. Fuel dilution can decrease the viscosity of engine oil, reducing its film thickness. Higher concentrations of fuel are believed to accumulate in oil with biodiesel than with diesel fuel because biodiesel has a higher boiling temperature range, allowing it to persist in the sump. Numerous countries are taking actions to promote the use of biodiesel. The growing interest for biodiesel has been driven by a desire for energy independence (domestically produced), the increasing cost of petroleum-derived fuels, and an interest in reducing greenhouse gas emissions. Biodiesel can affect engine lubrication (through fuel dilution), as its physical and chemical properties are significantly different from those of petrodiesel. Many risks associated with excessive biodiesel dilution have been identified, yet its actual impact has not been well quantified.
Journal Article

Methodology for Predictive Friction Modeling in Direct-Acting Mechanical Bucket Valvetrain System

2015-04-14
2015-01-0677
Valvetrain friction can represent a substantial portion of overall engine friction, especially at low operating speed. This paper describes the methodology for predictive modeling of frictional losses in the direct-acting mechanical bucket tappet-type valvetrain. The proposed modeling technique combines advanced mathematical models based on established theories of Hertzian contact, hydrodynamic and elastohydrodynamic lubrication (EHL), asperity contact of rough surfaces, flash temperature, and lubricant rheology with detailed measurements of lubricant properties and surface finish, driven by a detailed analysis of valvetrain system kinematics and dynamics. The contributions of individual friction components to the overall valvetrain frictional loss were identified and quantified. Calculated valvetrain friction was validated against motored valvetrain friction torque measurements on two engines.
Technical Paper

The Effect of Friction Modifiers and DI Package on Friction Reduction Potential of Next Generation Engine Oils: Part II Aged Oils

2019-04-02
2019-01-0303
Engine oil plays an important role in improving fuel economy of vehicles by reducing frictional losses in an engine. Our previous investigation explored the friction reduction potential of next generation engine oils by looking into the effects of friction modifiers and dispersant Inhibitor packages when engine oil was fresh. However, engine oil starts aging the moment engine start firing because of high temperature and interactions with combustion gases. Therefore, it is more relevant to investigate friction characteristics of aged oils. In this investigation, oils were aged for 5000 miles in taxi cab application.
X