Refine Your Search

Topic

Search Results

Technical Paper

ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

2015-04-14
2015-01-0974
The Automotive Deployment Options Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy's Vehicle Technologies Office. It estimates technology improvement impacts on future U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method to estimate vehicle sales. Specifically, it estimate sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced.
Journal Article

Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

2012-04-16
2012-01-0494
While it is well known that “MPG will vary” based on how one drives, little independent research exists on the aggregate fuel savings potential of improving driver efficiency and on the best ways to motivate driver behavior changes. This paper finds that reasonable driving style changes could deliver significant national petroleum savings, but that current feedback approaches may be insufficient to convince many people to adopt efficient driving habits. To quantify the outer bound fuel savings for drive cycle modification, the project examines completely eliminating stop-and-go driving plus unnecessary idling, and adjusting acceleration rates and cruising speeds to ideal levels. Even without changing the vehicle powertrain, such extreme adjustments result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Journal Article

Comparison of Vehicle-Broadcasted Fuel Consumption Rates against Precise Fuel Measurements for Medium- and Heavy-Duty Vehicles and Engines

2017-03-28
2017-01-0901
Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption. Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles.
Technical Paper

Contribution of Road Grade to the Energy Use of Modern Automobiles Across Large Datasets of Real-World Drive Cycles

2014-04-01
2014-01-1789
Understanding the real-world power demand of modern automobiles is of critical importance to engineers using modeling and simulation in the design of increasingly efficient powertrains. Increased use of global positioning system (GPS) devices has made large-scale data collection of vehicle speed (and associated power demand) a reality. While the availability of real-world GPS data has improved the industry's understanding of in-use vehicle power demand, relatively little attention has been paid to the incremental power requirements imposed by road grade. This analysis quantifies the incremental efficiency impacts of real-world road grade by appending high-fidelity elevation profiles to GPS speed traces and performing a large simulation study. Employing a large, real-world dataset from the National Renewable Energy Laboratory's Transportation Secure Data Center, vehicle powertrain simulations are performed with and without road grade under five vehicle models.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

Determining Off-cycle Fuel Economy Benefits of 2-Layer HVAC Technology

2018-04-03
2018-01-1368
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state.
Technical Paper

Development of Variable Temperature Brake Specific Fuel Consumption Engine Maps

2010-10-25
2010-01-2181
Response Surface Methodology (RSM) techniques are applied to develop brake specific fuel consumption (BSFC) maps of a test vehicle over standard drive cycles under various ambient conditions. This technique allows for modeling and predicting fuel consumption of an engine as a function of engine operating conditions. Results will be shown from Federal Test Procedure engine starts of 20°C, and colder conditions of -7°C. Fueling rates under a broad range of engine temperatures are presented. Analysis comparing oil and engine coolant as an input factor of the model is conducted. Analysis comparing the model to experimental datasets, as well as some details into the modeling development, will be presented. Although the methodology was applied to data collected from a vehicle, the same technique could be applied to engines run on dynamometers.
Technical Paper

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus

2011-04-12
2011-01-0863
Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy-duty vehicle vocations, including school buses. The true magnitude of these reductions is best assessed by comparative testing over relevant drive cycles. The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data, and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation PHEV school bus equipped with a 6.4 L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. For a baseline comparison, a Bluebird 7.2 L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity.
Technical Paper

FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

2015-04-14
2015-01-0973
The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy's Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery life. The input data for most light-duty vehicles can be automatically imported. Those inputs can be modified to represent variations of the vehicle or powertrain. The vehicle and its components are then simulated through speed-versus-time drive cycles. At each time step, FASTSim accounts for drag, acceleration, ascent, rolling resistance, each powertrain component's efficiency and power limits, and regenerative braking. Conventional vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, compressed natural gas vehicles, and fuel cell vehicles are included.
Technical Paper

Investigating Steady-State Road Load Determination Methods for Electrified Vehicles and Coordinated Driving (Platooning)

2018-04-03
2018-01-0649
Reductions in vehicle drive losses are as important to improving fuel economy as increases in powertrain efficiencies. In order to measure vehicle fuel economy, chassis dynamometer testing relies on accurate road load determinations. Road load is currently determined (with some exceptions) using established test track coastdown testing procedures. Because new vehicle technologies and usage cases challenge the accuracy and applicability of these procedures, on-road experiments were conducted using axle torque sensors to address the suitability of the test procedures in determining vehicle road loads in specific cases. Whereas coastdown testing can use vehicle deceleration to determine load, steady-state testing can offer advantages in validating road load coefficients for vehicles with no mechanical neutral gear (such as plug-in hybrid and electric vehicles).
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

2017-03-28
2017-01-0157
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

2015-09-29
2015-01-2812
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method.
Journal Article

On-Road Validation of a Simplified Model for Estimating Real-World Fuel Economy

2017-03-28
2017-01-0892
On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle’s fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of “off-cycle credits” that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Journal Article

Potentials for Platooning in U.S. Highway Freight Transport

2017-03-28
2017-01-0086
Smart technologies enabling connection among vehicles and between vehicles and infrastructure as well as vehicle automation to assist human operators are receiving significant attention as a means for improving road transportation systems by reducing fuel consumption – and related emissions – while also providing additional benefits through improving overall traffic safety and efficiency. For truck applications, which are currently responsible for nearly three-quarters of the total U.S. freight energy use and greenhouse gas (GHG) emissions, platooning has been identified as an early feature for connected and automated vehicles (CAVs) that could provide significant fuel savings and improved traffic safety and efficiency without radical design or technology changes compared to existing vehicles. A statistical analysis was performed based on a large collection of real-world U.S. truck usage data to estimate the fraction of total miles that are technically suitable for platooning.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-04-14
2020-01-1252
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility.
X