Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

A 1-D Platform to Simulate the Effects of Dedicated EGR on SI Engine Combustion

2017-03-28
2017-01-0524
The thermal efficiency of spark-ignition engines can be enhanced by increasing the rate of exhaust gas recirculation (EGR) such that the low temperature combustion regime could be achieved. However, there is an upper limit on the amount of EGR rate, beyond which flame speed becomes slow and unstable, and local quenching starts to hurt the combustion stability, efficiency, and emission. To resolve this issue, the concept of dedicated EGR has been proposed previously to be an effective way to enhance flame propagation under lean burn condition with even higher levels of EGR with reformate hydrogen and carbon monoxide. In this study, the effects of thermochemical fuel reforming on the reformate composition under rich conditions (1.0 < ϕ < 2.0) have been studied using detailed chemistry for iso-octane, as the representative component for gasoline.
Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Comparative Assessment of Alternative Powertrains and Body-in-White Materials for Advanced Technology Vehicles

2004-03-08
2004-01-0573
The affordability of today's and future advanced technology vehicles (i.e., diesel, hybrid, and fuel cell) developed for improved fuel economy remains a concern with respect to final consumer acceptance. The automotive system cost model (ASCM) developed for the production cost estimates at a level of five major subsystems and 35+ components, has been used here to address the affordability issue of advanced technology vehicles. Scenarios encompassing five alternative powertrain and three body options for a mid-size vehicle under two different timeframes (i.e., 2002 and 2010) were considered to determine the cost-effectiveness of among the competing technology options within the same timeframe and between the two timeframes.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Comparison of HCCI Ignition Characteristics of Gasoline Fuels Using a Single-Zone Kinetic Model with a Five Component Surrogate Fuel

2008-10-06
2008-01-2399
While gasoline surrogate development has progressed in the areas of more complex surrogate mixtures and in kinetic modeling tools and mechanism development, it is generally recognized that further development is still needed. This paper represents a small step in supporting this development by providing comparisons between experimental engine data and surrogate-based kinetic models. In our case, the HCCI engine data comes from a port-injected, single-cylinder research engine with intake-air heating for combustion phasing control. Timing sweeps were run at constant fuel rate for three market gasolines and five surrogate mixtures. Modeling was done using the CHEMKIN software with a gasoline mechanism set containing 1440 species and 6572 reactions. Five pure compounds were selected for the surrogate blends and include iso-octane, n-heptane, toluene, methylcyclohexane, and 1-hexene.
Technical Paper

A Comprehensive Method for Piston Secondary Dynamics and Piston-Bore Contact

2007-04-16
2007-01-1249
Low vibration and noise level in internal combustion engines has become an essential part of the design process. It is well known that the piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. The piston secondary motion and piston-bore contact pattern are critical in piston design because they affect the skirt-to-bore impact force and therefore, how the piston impact excitation energy is damped, transmitted and eventually radiated from the engine structure as noise. An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model. The method includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading, piston barrelity and ovality, piston flexibility and skirt-to-bore clearance. The method accounts for piston kinematics, rigid-body dynamics and flexibility.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Technical Paper

A Current Source Inverter Based Motor Drive for EV/HEV Applications

2011-04-12
2011-01-0346
The voltage source inverter (VSI) possesses several drawbacks that make it difficult to meet the requirements of automotive applications for inverter volume, lifetime, and cost. The VSI requires a very high performance dc bus capacitor that is costly and bulky. Other characteristics of the VSI not only negatively impact its own reliability but also that of the motor as well as motor efficiency. These problems could be eliminated or significantly mitigated by the use of the current source inverter (CSI). The CSI doesn't require any dc bus capacitors but uses three small ac filter capacitors and an inductor as the energy storage component, thus avoiding many of the drawbacks of the VSI. The CSI offers several inherent advantages that could translate into a substantial reduction in inverter cost and volume, increased reliability, a much higher constant-power speed range, and improved motor efficiency and lifetime.
Technical Paper

A Feasibility Evaluation of a Thermal Plasma Fuel Reformer for Supplemental Hydrogen Addition to Internal Combustion Engines

1999-04-26
1999-01-2239
One scenario for reducing engine out NOx in a spark ignition engine is to introduce small amounts of supplemental hydrogen to the combustion process. The supplemental hydrogen enables a gasoline engine to run lean where NOx emissions are significantly reduced and engine efficiency is increased relative to stoichiometric operation. This paper reports on a mass and energy balance model that has been developed to evaluate the overall system efficiencies of a thermal reformer-heat exchanger system capable of delivering hydrogen to the air intake of a gasoline engine. The mass and energy balance model is utilized to evaluate the conditions where energy losses associated with fuel reformation may be offset by increases in engine efficiencies.
Technical Paper

A Hybrid 2-Zone/WAVE Engine Combustion Model for Simulating Combustion Instabilities During Dilute Operation

2005-10-24
2005-01-3801
Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NOx emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Least-Cost Method for Prioritizing Battery Research

1983-02-01
830221
A methodology has been developed for identifying the combination of battery characteristics which lead to least-cost electric vehicles. Battery interrelationships include specific power vs, specific energy, peak power vs. specific energy and DOD, cycle life vs. DOD, cost vs. specific energy and peak power, and volumetric and battery size effects. The method is illustrated for the “second car” mission assuming lead/acid batteries. Reductions in life-cycle costs associated with future battery research breakthroughs are estimated using a sensitivity technique. A research prioritization system is described.
Technical Paper

A Life-Cycle-Based Environmental Evaluation: Materials in New Generation Vehicles

2000-03-06
2000-01-0595
This project team conducted a life-cycle-based environmental evaluation of new, lightweight materials (e.g., titanium, magnesium) used in two concept 3XVs -- i.e., automobiles that are three times more fuel efficient than today's automobiles -- that are being designed and developed in support of the Partnership for a New Generation of Vehicles (PNGV) program. The two concept vehicles studied were the DaimlerChrysler ESX2 and the Ford P2000. Data for this research were drawn from a wide range of sources, including: the two automobile manufacturers; automobile industry reports; government and proprietary databases; past life-cycle assessments; interviews with industry experts; and models.
Technical Paper

A Machine Approach for Field Weakening of Permanent-Magnet Motors

2000-04-02
2000-01-1549
The commonly known technology of field weakening for permanent-magnet (PM) motors is achieved by controlling the direct-axis current component through an inverter. Without using mechanical variation of the air gap, a new machine approach for field weakening of PM machines by direct control of air-gap fluxes is introduced. The demagnetization situation due to field weakening is not an issue with this new method. In fact, the PMs are strengthened at field weakening. The field-weakening ratio can reach 10:1 or higher. This technology is particularly useful for the PM generators and electric vehicle drives.
Technical Paper

A Model for Crank-Angle-Resolved Engine Cylinder Pressure Estimation

2018-04-03
2018-01-1157
Real-time measurement or estimation of crank-angle-resolved engine cylinder pressure may become commonplace in the next generation of engine controllers to optimize spark, valve timing, or compression ratio. Toward the development of a real-time cylinder pressure estimator, this work presents a crank-angle-resolved engine cylinder pressure estimation model that could accept inputs such as speed, manifold pressure and throttle position, and deliver crank-angle resolved cylinder pressure in real-time, at engine speeds covering the useful operating range of most engines. The model was validated by comparing simulated cylinder pressure with thirteen sets of cylinder pressure data, from two different commercial engines from two different OEMs. Estimated pressures were compared against the actual measured pressure traces. The average relative error is about 3% while the maximum relative error is 5%. Both can be improved with further tuning.
Technical Paper

A Modeling Study of SCR Reaction Kinetics from Reactor Experiments

2013-04-08
2013-01-1576
In order to further characterize and optimize the performance of Selective Catalytic Reduction (SCR) aftertreatment systems used on heavy-duty diesel engines, an accurately calibrated high-fidelity multi-step global kinetic SCR model and a reduced order estimator for on-board diagnostic (OBD) and control are desirable. In this study, a Cu-zeolite SCR catalyst from a 2010 Cummins ISB engine was experimentally studied in a flow reactor using carefully designed protocols. A 2-site SCR model describing mass transfer and the SCR chemical reaction mechanisms is described in the paper. The model was calibrated to the reactor test data sets collected under temperatures from 200 to 425 °C and SCR space velocities of 60000, 90000, and 120000 hr-1. The model parameters were calibrated using an optimization code to minimize the error between measured and simulated NO, NO₂, N₂O, and NH₃ gas concentration time histories.
X