Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effect of Injection Pressure on Transient Behaviour of Wall-Interacting Jet Flame Base in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2536
Influence of the injection pressure on the temporal evolution of lifted jet flame base upon the bowl wall impingement has been studied in a small-bore optical diesel engine. Previous studies suggest that the jet-wall interaction causes re-entrainment of combustion products into the incoming jet, which shortens the lift-off length during the injection and thereby increasing downstream soot. After the end of injection, the flame base slowly moves downstream as the diminishing jet momentum results in reduced re-entrainment. How the injection pressure impacts this transient behaviour of the flame base is a main focus of the present study. Common-rail pressure was varied from 70 to 160 MPa at a fixed injection mass (10 mg per hole) and timing (7°CA bTDC).
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
Journal Article

Injection Pressure Effects on the Flame Development in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-0791
The impact of fuel injection pressure on the development of diesel flames has been studied in a light-duty optical engine. Planer laser-induced fluorescence imaging of fuel (fuel-PLIF) and hydroxyl radicals (OH-PLIF) as well as line-of-sight integrated chemiluminescence imaging of cool-flame and OH* were performed for three different common-rail pressures including 70, 100, and 130 MPa. The injection timing and injected fuel mass were held constant resulting in earlier end of injection for higher injection pressure. The in-cylinder pressure was also measured to understand bulk-gas combustion conditions through the analysis of apparent heat release rate. From the cool-flame images, it is found that the low-temperature reaction starts to occur in the wall-interacting jet head region where the fuel-air mixing could be enhanced due to a turbulent ring-vortex formed during jet-wall interactions.
X